1. Two radio antennas separated by \(d = 273 \) m, as shown in Figure P37.3 simultaneously broadcast identical signals at the same wavelength. A radio in a car traveling due north receives the signals.

(a) If the car is at the position of the second maximum, what is the wavelength of the signals?

\[\frac{50.35}{124} \text{ m} \]

(b) How much farther must the car travel to encounter the next minimum in reception? (Note: Do not use the small-angle approximation in this problem.)

\[
2\lambda = \sqrt{1000^2 + (400 + \frac{273}{2})^2} - \sqrt{1000^2 + (400 - \frac{273}{2})^2}
\]

\[
= 1134.82 - 1034.134
\]

\[
= 100.687
\]

So, \(\lambda = 50.35 \) m.

\[
\frac{5}{2} \lambda
\]

\[
\Rightarrow \lambda = 124 \text{ m.}
\]
2. PSE6 37.P.007 [318009] Two narrow, parallel slits separated by 0.205 mm are illuminated by green light (\(\lambda = 546.1 \) nm). The interference pattern is observed on a screen 1.50 m away from the plane of the slits.

(a) Calculate the distance from the central maximum to the first bright region on either side of the central maximum.

\[
\sqrt{\frac{4 \lambda L}{d}} = \frac{546.1 \times 10^{-6} \times 1.5 \times 10^3}{0.205} \text{ mm}
\]

\[
= 4.0 \text{ mm}
\]

(b) Calculate the distance between the first and second dark bands.

\[
\Delta y_{\text{dark}} = \frac{\lambda L}{d} \left(2 + \frac{1}{2} \right) - \frac{\lambda L}{d} \left(1 + \frac{1}{2} \right) = \frac{\lambda L}{d} = 4.0 \text{ mm}
\]

3. PSE6 37.P.037 [318007] A beam of 460 nm light passes through two closely spaced glass plates, as shown in Figure P37.37. For what minimum nonzero value of the plate separation \(d \) is the transmitted light bright?

\[
2.30 \text{ nm}
\]

Figure P37.37

\[2d = m \lambda, \quad m = 1, 2, \ldots\]

\[d = \frac{m \lambda}{2}\]

\[d_{\text{min}} = \frac{\lambda}{2} = 230 \text{ nm}\]
4. A possible means for making an airplane invisible to radar is to coat the plane with an antireflective polymer. If radar waves have a wavelength of 3.20 cm and the index of refraction of the polymer is \(n = 1.70 \), how thick would you make the coating? (Assume that the index of refraction of the plane is higher than that of the coating.)

\[
\frac{\lambda}{2} = 2d \times 1.70
\]

So,

\[
d = \frac{\lambda}{4 \times 1.70} = \frac{3.20}{4 \times 1.70} = 0.471 \text{ cm}
\]

5. Two coherent waves are described by the expressions below, where \(a = 8 \) and \(b = 10 \).

\[
E_1 = E_0 \sin\left(\frac{2\pi x_1}{\lambda} - 2\pi f t + \frac{\pi}{a}\right)
\]

\[
E_2 = E_0 \sin\left(\frac{2\pi x_2}{\lambda} - 2\pi f t + \frac{\pi}{b}\right)
\]

Determine the relationship between \(x_1 \) and \(x_2 \) that produces constructive interference when the two waves are superposed. (Use \(m \) for \(m \) and \(\lambda \) for \(\lambda \).)

\[
x_1 - x_2 = \left(\frac{\lambda}{2}\right) m \text{ for } m = 0, 1, 2, 3, \ldots
\]

\[
\frac{2 \pi x_1}{\lambda} - \frac{2 \pi f t + \frac{2\pi}{a}}{2 \pi} = \frac{2 \pi x_2}{\lambda} - \frac{2 \pi f t + \frac{2\pi}{b}}{2 \pi} + 2\pi m
\]

\[
\rightarrow \frac{x_1}{\lambda} - \frac{x_2}{\lambda} = m + \frac{1}{2\pi} - \frac{1}{2\pi} b
\]

\[
\rightarrow x_1 - x_2 = (m + \frac{1}{2\pi} - \frac{1}{2\pi} b) \lambda
\]