Problem 1.

a. A parallel-plate capacitor with circular plates of radius R is fed with long straight wires running along the capacitor's axis, as shown. Calculate the magnetic field resulting from the buildup of charge Q in the capacitor for points which are on the capacitor's midplane but outside of the capacitor itself (r > R). Show that Ampère's law for steady currents gives the same result, provided that r > R.

\[
\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\Phi}{dt}
\]

Using Ampère's law for steady currents:

\[
\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 I
\]

\[
2\pi r B = \mu_0 I_0 \Rightarrow B = \frac{\mu_0 I_0}{2\pi r}
\]

b. An electromagnetic planewave travels in a vacuum. The magnetic field varies with distance y (meters) and t (seconds) as \(\mathbf{B} = 4.4 \sin(1.7y - 8.4 \times 10^7 t) \hat{y} \). What is the electric field \(\mathbf{E} \) and the mean intensity \(\overline{S} \) of the radiation?

\[
\mathbf{E} = \mathbf{E}_0 \sin(1.7y - 8.4 \times 10^7 t) \hat{x}
\]

\[
\overline{S} = \frac{E_0 B_0}{2} \Rightarrow \overline{S} = 1.32 \times 10^{15} \text{ W/m}^2
\]

c. Find the wavelength \(\lambda \) and frequency \(f \) of the plane wave in part (b).

\[
\lambda = \frac{\omega}{k} = \frac{\lambda}{1.7} \Rightarrow \lambda = 3.7 \text{ m}
\]

\[
f = \frac{c}{\lambda} = \frac{3 \times 10^8}{3.7} \Rightarrow f = 8.1 \times 10^7 \text{ Hz}
\]
Problem 2.

a. A satellite measures the average intensity of light from the Sun to be 9.8 kW/m² near the orbit of Mercury \((R = 5.8 \times 10^{10} \text{ m})\). The satellite absorbs all of the Sun’s radiation through a surface of area 2.4 m² facing the Sun. What is the force from Solar radiation on the satellite?

\[
P = \frac{F}{c} = \frac{F \cdot A}{c} = \frac{5A}{c} = \frac{9.8 \times 10^{12} \times 2.4 \times 10^{8}}{3.0 \times 10^{8}} = 7.8 \times 10^{-5} \text{ N}
\]

\[
P_w = \frac{F}{c} \cdot \frac{A}{c} = \frac{7.8 \times 10^{-5} \text{ N}}{1} = 7.8 \times 10^{-5} \text{ N}
\]

b. Using the intensity of sunlight measured by the satellite in part (a) at Mercury’s orbit, find the total luminosity of the Sun.

\[
P = \frac{5A}{3} = \frac{9.8 \times 10^{12} \times 2.4 \times 10^{8}}{3.0 \times 10^{8}} = 4.1 \times 10^{12} \text{ W}
\]

C. A 10 kg satellite accelerates by sending off a steady burst of laser light. If the laser power is 950 MW and the burst lasts for 30 s, what is the change in the satellite’s speed?

\[
\Delta \rho = \frac{U}{c} = \frac{9.5 \times 10^{12} \times 30}{3.0 \times 10^{8}} \text{ m/s} \quad \Delta \rho = \frac{\Delta P}{m} = \frac{9.5 \times 10^{12} \times 30}{3.0 \times 10^{8}} \text{ m/s}
\]

\[
\Delta V = \frac{U}{c} = \frac{9.5 \times 10^{12} \times 30}{3.0 \times 10^{8}} \text{ m/s} = 9.5 \text{ m/s}
\]

\[
f = \frac{F}{c} = \frac{9.5 \times 10^{12}}{3.0 \times 10^{8}} \text{ m/s}
\]

\[
a = \frac{F}{m} = \frac{9.5 \times 10^{12} \times 30}{3.0 \times 10^{8}} \text{ m/s} \quad V = a \cdot t = \frac{9.5 \times 10^{12} \times 30}{3.0 \times 10^{8}} = 9.5 \text{ m/s}
\]

d. A beam of unpolarized light travels through three polarized filters as shown. If the average intensity of light in the beam after having passed through all three filters is \(S_f = 1.34 \text{ W/m}^2\), what is the average intensity \(S_f'\) after the middle filter is removed?

\[
S_f = \frac{1}{3} \cdot 1.34 \text{ W/m}^2 \quad S_{30^\circ} = \frac{1}{3} \cdot 1.34 \text{ W/m}^2
\]

\[
S_{60^\circ} = \frac{1}{3} \cdot 1.34 \text{ W/m}^2
\]

\[
S_f' = S_{30^\circ} + \gamma = 0.60 \text{ W/m}^2 + \gamma
\]
Problem 3.

a. A ray enters a prism of index of refraction \(n = 1.53 \), as shown. Sketch the path of the ray. Label all relevant angles of incidence, reflection and/or refraction, and give their numerical values.

\[
\begin{align*}
n \sin \theta_c &= 1 \\
\theta_c &= \sin^{-1} \left(\frac{1}{n} \right) = 40.8^\circ + 1 \\
n \sin \theta_f &= \sin \theta_f \\
\theta_f &= 50^\circ + 2
\end{align*}
\]

b. Two light beams, one red and the other blue, travel through a slab of glass. How much faster is the red light if the indices of refraction are \(n_{\text{red}} = 1.51 \) and \(n_{\text{blue}} = 1.54 \)?

\[
V = \frac{C}{n} + 2
\]

\[
V_r - V_b = C \left(\frac{1}{n_r} - \frac{1}{n_b} \right) = \frac{C (n_b - n_r)}{n_r n_b} = 3.86 \times 10^6 \text{m/s}
\]

\(+ 2 \)

c. In the diagram below, the values of the indices of refraction are \(n_1 = 1.33 \) and \(n_2 = 1.9 \), and the light rays are all polarized in the plane of the page. Sketch the direction of oscillation of the radiating charges (labelled \(q \)) along the incident and refracted rays. State in a short sentence why there is no radiation along the reflected ray. Finally, calculate the angle of incidence, \(\theta_1 \).

\[
\tan \theta_1 = \frac{n_2}{n_1} + 2
\]

\[
\theta_1 = \arctan \left(\frac{n_2}{n_1} \right) = 55^\circ
\]

\(+ 2 \)

There is no radiation in the direction of acceleration (same as the direction of oscillation of the radiating charges).