Problem 1: Classical Electron radius

Denote the electron radius as R and total charge as e. We approximate it as a uniformly charged sphere with charge density $\rho = \frac{e}{\frac{4}{3} \pi R^3}$.

We want to find its electrostatic energy in three different ways.

e) Assemble the sphere layer by layer.

Consider a partially assembled sphere of radius $r < R$ and charge $q < e$. The potential due to this sphere at the surface of it is

$$\Psi(r) = \frac{1}{4\pi \varepsilon_0} \frac{qe}{r} = \frac{1}{4\pi \varepsilon_0} \frac{e\rho^2}{r^3}$$

Now, suppose we want to add a thin shell of thickness dr and charge dq to the partially assembled sphere. The charge dq can be expressed as

$$dq = 4\pi r^2 dr \rho = 3e \frac{r^2 dr}{R^3}$$

The work required to add the shell is

$$dW = dq \Psi(r) = 3e \frac{r^2 dr}{R^3} \frac{1}{4\pi \varepsilon_0} \frac{e\rho^2}{R^3} = \frac{3e^2 r^4}{4\pi \varepsilon_0 R^3} dr$$
We can repeat this process and add up (i.e. integrate) all of the work required to assemble the sphere.

\[W = \frac{3e^2}{4\pi \varepsilon_0 R^2} \int_0^R dr \, r^n = \frac{1}{4\pi \varepsilon_0} \frac{3e^2}{cR} = W \]

b) Use the electric field. \[W = \frac{\varepsilon_0}{2} \int_{\text{all space}} dV \, E^2 \]

Since we need to integrate over all space, we need to know the electric field everywhere:

\[\hat{E}(r) = \frac{e^2}{4\pi \varepsilon_0} \begin{cases} \frac{1}{r^2} & r < R \\ \frac{1}{R^2} & r > R \end{cases} \]

So, the energy is

\[W = \frac{\varepsilon_0}{2} \left(\frac{e^2}{4\pi \varepsilon_0} \right)^2 \int d\Phi \int dS \sin \phi [\int_0^R dr \, r^2 \left(\frac{1}{r^2} \right)^2 + \int_{R}^{\infty} dr \, r^2 \left(\frac{1}{r^2} \right)^2] \]

\[= \frac{1}{2} \frac{e^2}{4\pi \varepsilon_0} \left[\frac{r^5}{5R^6} \bigg|_0^R - \frac{1}{r} \bigg|_0^\infty \right] \]

\[= \frac{1}{2} \frac{e^2}{4\pi \varepsilon_0} \left[\frac{1}{5R^6} + \frac{1}{R^2} \right] = \frac{1}{4\pi \varepsilon_0} \frac{3e^2}{cR} = W \]
c) Use the potential \(W = \frac{1}{2} \int dV \rho(r) \psi(r) \)

Here, \(\rho = \frac{e}{\frac{4}{3} \pi R^3} = \text{const} \) and we need to integrate \(\psi(r) \) over the volume of the sphere. (since \(\rho = 0 \) outside)

First, we need to calculate the potential:

\[
\psi(r) = -\int_0^R \frac{dV}{V} \L E = -\int_0^R \frac{dV}{V} E_{\text{outside}} - \int_0^R \frac{dV}{V} E_{\text{inside}} = \frac{e}{4\pi \varepsilon_0} \left[-\int_0^R \frac{dV}{V} \right] \\
= \frac{e}{4\pi \varepsilon_0} \left(\frac{1}{R} - \frac{r^2 - R^2}{2R^3} \right) = \frac{e}{4\pi \varepsilon_0} \frac{1}{2} \left(\frac{3}{R^2} - \frac{r^2}{R^3} \right)
\]

So then the work is

\[
W = \frac{1}{2} \frac{e}{\frac{4}{3} \pi R^3} \int_0^R \frac{dV}{V} r^2 \frac{e}{4\pi \varepsilon_0} \frac{1}{2} \left(\frac{3}{R^2} - \frac{r^2}{R^3} \right)
\]

Angular integral

\[
W = \frac{3e^2}{4\pi \varepsilon_0} \frac{1}{4R^3} \left(\frac{R^2}{12} - \frac{R^5}{15} \right)
\]

\[
W = \frac{1}{4\pi \varepsilon_0} \frac{3e^2}{5R}
\]

d) Numerical value for electron radius

To estimate the electron radius, assume that the rest energy is equal to the electrostatic energy:

\[
\frac{1}{4\pi \varepsilon_0} \frac{3e^2}{5R} = MeC^2.
\]
Solving for the radius:

\[R = \frac{3e^2}{4\pi\varepsilon_0} \frac{1}{\frac{5mc^2}{3}} \]

\[= \frac{3(1.6 \times 10^{-19} \text{C})^2}{4\pi (8.85 \times 10^{-12} \text{C}^2/\text{Nm}^2)} \frac{1}{5(9.1 \times 10^{-31} \text{kg})(3 \times 10^8 \text{m/s})^2} \]

\[R \approx 1.7 \times 10^{-15} \text{m} \]

What if we had decided to model the electron as a spherical shell rather than a solid sphere? The electrostatic energy would have been smaller. This can be seen by writing the electric field of a shell:

\[E(r) = \begin{cases} \frac{1}{\frac{4\pi\varepsilon_0}{r^2}}, & r > R \\ \text{and} & \\
0, & r \leq R \end{cases} \]

Since the energy is the integral of the square of the field, the first term in (b) vanishes.
Problem 2. Electrostatic energy of spherical shell with charge density \(\sigma(r, \theta) = \sigma_0 \cos \theta \).

We want to calculate the electrostatic energy in two ways: using the electric field and using the potential. So first, we need to know both of those things.

The electric potential of a spherical shell (which you know either from class or from example 3.9 in Griffiths) is

\[
U(r, \theta) = \begin{cases} \frac{\sigma_0}{3 \varepsilon_0} \frac{r \cos \theta}{r} & r < R \\ \frac{\sigma_0 R^3}{3 \varepsilon_0} \frac{\cos \theta}{r^2} & r > R \end{cases}
\]

The electric field can be found by calculating the gradient:

\[
E(r, \theta) = -\nabla U(r, \theta) = \left(\frac{\sigma_0}{3 \varepsilon_0} \frac{\cos \theta}{r} \right) \hat{r} + \left(\frac{\sigma_0 R^3}{3 \varepsilon_0} \frac{\cos \theta}{r^2} \right) \hat{\theta}
\]

\[
= \begin{cases} \frac{\sigma_0}{3 \varepsilon_0} \left(-\cos \theta \hat{r} + \frac{1}{r} \sin \theta \hat{\theta} \right) & r < R \\ \frac{\sigma_0 R^3}{3 \varepsilon_0} \frac{1}{r^2} \left(2 \cos \theta \hat{r} + \sin \theta \hat{\theta} \right) & r > R \end{cases}
\]

a) Energy using the electric field \(W = \frac{\varepsilon_0}{2} \int_{\text{All Space}} \text{d}V E^2 \).

Here we actually need the square of the field:

\[
E^2(r, \theta) = E \cdot E = \frac{\sigma_0^2}{9 \varepsilon_0^2} \begin{cases} \frac{1}{r} \cdot \frac{R}{r} & r < R \\ \frac{R^6}{r^6} \left(4 \cos^2 \theta + \sin^2 \theta \right) & r > R \end{cases}
\]
Inside: \(W_{\text{in}} = \frac{\varepsilon_0}{2} \frac{\sigma^2}{\varepsilon_0} \frac{4}{3} \pi R^3 \)

Outside:

\[
W_{\text{out}} = \frac{\varepsilon_0}{2} \frac{\sigma^2}{\varepsilon_0} 2\pi \int_0^{\pi} d\theta \sin \theta (4 \cos^2 \theta + \sin^2 \theta) \int_0^R dr \frac{r^2 R^6}{r^6} = \frac{\varepsilon_0}{2} \frac{\sigma^2}{\varepsilon_0} 2\pi \frac{4}{3} R^3 = \frac{R^3}{3}
\]

Total: \(W = W_{\text{in}} + W_{\text{out}} = \frac{2\pi}{9\varepsilon_0} \sigma^2 R^3 = W \)

b) Using the potential

\[
W = \frac{1}{2} \int \text{d}V \rho \varphi = \frac{1}{2} \int \text{d}a \sigma \varphi \quad \text{with} \quad \text{d}a = R^2 \sin \theta d\theta d\phi
\]

Since we are dealing with a surface charge, we want the potential at \(r=R \):

\[
\varphi (r, \theta) = \frac{\sigma}{3 \varepsilon_0} R \cos \theta
\]

So the energy is

\[
W = \frac{1}{2} \int R^2 \sin \theta d\theta d\phi \sigma \cos \theta \frac{\sigma}{3 \varepsilon_0} R \cos \theta
\]

\[
= \frac{1}{2} R^3 \frac{\sigma^2}{3 \varepsilon_0} 2\pi \int_0^{\pi} d\theta \sin \theta \cos \theta \cos^2 \theta
\]

\[
= \frac{2}{3}
\]

\[
W = \frac{2\pi}{9\varepsilon_0} \sigma^2 R^3
\]