Collab #3 Solutions

Part 1. Since \(E = 0 \) outside \(V_a = 0 \)

Part 2. \[\int_{a}^{b} \frac{d\phi}{r} = 0 \Rightarrow V_b = 0 \]

Part 3. \[V_d = k \int \frac{d\phi}{r} = k\left(-\frac{Q}{2R}\right) + \frac{k}{R} \int_{r}^{2R} \frac{d\rho}{r} \]

Outer surface contribution

\[= -\frac{kQ}{2R} + 4\pi k \rho \frac{1}{2} \left[R^2 - R^2\right] = -\frac{kQ}{2R} \]

Thick shell contribution

\[= -\frac{kQ}{2R} + 4\pi k \rho \frac{3}{2} R^2 \]

But \(Q \) = charge on thick shell = \[\frac{4\pi}{3} [2R^3 - R^3] \rho = \frac{7}{3} 4\pi \rho R^3 \]

Thus \(V_d = \frac{-kQ}{2R} + 4\pi k \frac{3}{2} R^2 \left[\frac{3}{7} \frac{Q}{4\pi \rho R^3}\right] \]

\[= \frac{kQ}{7R} \]

Part 4. Add \(\frac{kQ}{R} \) to the potential at all points

Part 5. \(E = 0 \) between \(d \) and \(c \), hence \(V_c = V_d = \frac{kQ}{7R} \)

Part 6. \[V_b - V_c = -\int_{c}^{b} E \cdot dr = -\int_{c}^{2R} \frac{kQ}{7} \left[\frac{r}{R^3} - \frac{1}{r^2}\right] dr = -\frac{kQ}{7R} \]

But from parts 2 and 5

\[V_b - V_c = 0 - \frac{kQ}{7R} = -\frac{kQ}{7R} \]

Part 9. \[\text{E}^r \]

Part 10. Since \(E^r \) is negative at \(r = 0 \) (i.e., just outside) \(r = 0 \), there must be an infinite density of negative charge at \(r = 0 \). By comparison with the example done in class we can conclude \(\rho = \frac{const}{r} \) for \(r < R \). Since \(E^r \) jumps discontinuously at \(r = R \) there must be a positively charged surface distribution at \(r = R \).