Part 1 Since \(\overrightarrow{E} \) is parallel to the curve on which we are integrating, and since \(\overrightarrow{E} \) is constant on that curve:

\[
emf = \oint E \cdot dl = E \oint dl = E(2\pi a)
\]

But \(E \cdot dl = E^2 = K^2 (x^2 + y^2) e^{-2t/\tau} \tau = K^2 a^2 e^{-2t/\tau} \Rightarrow E = K a e^{-t/\tau}
\]

and hence \(emf = K 2\pi a^2 e^{-t/\tau} \)

Part 2 If \(B \propto e^{-t/\tau} \) then \(-\frac{dB}{dt} = \frac{1}{\tau} B \) and \(-\frac{d\phi}{dt} = \frac{1}{\tau} \phi \)

Thus \(-\frac{d\phi}{dt} = \frac{1}{\tau} \phi = emf = K 2\pi a^2 e^{-t/\tau} \)

Hence \(\phi = KT 2\pi a^2 e^{-t/\tau} \)

Part 3 The flux inside a circle of radius \(a \) is proportional to \(a^2 \). The area inside the circle is also proportional to \(a^2 \). Thus when we change the radius, the change in area accounts for all of the change in \(\phi \). If \(B \) were different at different radii, this could not be the case.

Since \(B \) is uniform (independent of \(r \)) we have

\[
\phi = B \cdot A = KT 2\pi a^2 e^{-t/\tau} \Rightarrow B = 2KT e^{-t/\tau}
\]

Part 4 A static \(B \) field (i.e., one that is unchanging in time) would make no contribution to the induced \(\overrightarrow{E} \) field, hence we could infer nothing about it.

Part 5 Divide the square into the 4 legs shown.

On legs 1 and 4 the legs are \(\perp \) to \(\overrightarrow{E} \), so the contribution to \(\oint \overrightarrow{E} \cdot dl \) is zero.

For Leg 1: \(x = a \cdot \overrightarrow{E} = K(a \hat{x} - y \hat{y}) e^{-t/\tau} \)

\[
\int_{E} dl = \int_0^a Kae^{-t/\tau} \ dy = K a^2 e^{-t/\tau}
\]

For Leg 2: \(y = a \cdot \overrightarrow{E} = K(x \hat{x} - a \hat{y}) e^{-t/\tau} \)

\[
\int_{E} dl = \int_0^a Kae^{-t/\tau} \ dx = + K a^2 e^{-t/\tau}
\]
Thus the total emf is $2K\alpha^2 e^{-t/T}$

But in the square $\Phi = AB = (a^2)\left(2KTe^{-t/T}\right)$

and by Faraday's law,

$$\text{emf} = -\frac{d\Phi}{dt} = 2\alpha^2 K e^{-t/T} \leq \text{agrees with answer above}$$

Part 6 First, lets find the emf on a circle of radius α.

Since $r = \alpha$, constant on a circle, the factor $\frac{\alpha}{r} - \frac{\beta}{r^3}$ just modifies $|\vec{E}|$ and we can write down the emf immediately:

$$\text{emf} = \left(\frac{\alpha}{\alpha^2} - \frac{\beta}{\alpha^3}\right) \frac{K 2\pi \alpha^2 e^{-t/T}}{\text{answer to part 1}}$$

It follows that the flux inside the circle is

$$\Phi = \left(\frac{\alpha}{\alpha^2} - \frac{\beta}{\alpha^3}\right) \frac{K 2\pi \alpha^2 e^{-t/T}}{\text{answer to part 2}} = 2\pi KT (\alpha - \frac{\beta}{\alpha}) e^{-t/T}$$

To infer $B(r)$ realize that

$$\Phi = \frac{K 2\pi \alpha^2 e^{-t/T}}{\text{answer to part 2}} = \alpha \int \frac{dA}{\vec{B} \cdot dA} = \int B(r) 2\pi r dr$$

What function $B(r)$ could result in an answer for the integral that has the form on the left? The only possibility is

$$B(r) = \frac{\beta KTe^{-t/T}}{r^3}$$

(Try it in the integral!)

Part 7 What current source could produce a B field that is perpendicular to the plane and dies off as $1/r^3$.

We know that a ring of radius R, lying in the plane will produce a B field \propto to the plane that dies off as $1/r^2$ for $r > R$. So imagine a ring of current centered on the origin of infinite current and zero size, and time dependence $e^{-t/T}$. This does the job.