Instructor: Dr. Orest Symko
Office Hours: T H, 8:00-9:00 a.m., 316 JFB
Office Phone: 801-581-6132
E-mail: orest@physics.utah.edu
Marshal: ()
Course Assistant: Mary Ann Woolf, 205 JFB, 801-581-4246 (also FAX), woolf@physics.utah.edu
WebAssign: Doug Baird (doug.baird@utah.edu)
WebAssign Link: https://www.webassign.net/utah/login.html

Lecture Sections

<table>
<thead>
<tr>
<th>Section</th>
<th>Days</th>
<th>Time</th>
<th>Location</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-001</td>
<td>MWF</td>
<td>7:30-8:20 a.m.</td>
<td>JFB 101</td>
<td></td>
</tr>
<tr>
<td>2010-011</td>
<td>MWF</td>
<td>8:35-9:25 a.m.</td>
<td>JFB 101</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

You MUST be enrolled in one of the discussion sections, section 2-11 or 13-22. The only way to enroll in Physics 2010 is through enrollment in a discussion section. You are required to attend the discussion section in which you are enrolled. Discussion section enrollment maxima vary with room size but do not exceed 45.

<table>
<thead>
<tr>
<th>Section</th>
<th>Time</th>
<th>Location</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-002/012</td>
<td>7:30 a.m.-8:20 a.m.</td>
<td>JTB 120</td>
<td>Sebastian Atwood</td>
</tr>
<tr>
<td>2010-003/013</td>
<td>7:30 a.m.-8:20 a.m.</td>
<td>WEB L122</td>
<td>Dipak Khanal</td>
</tr>
<tr>
<td>2010-004/014</td>
<td>12:55 p.m.-1:45 p.m.</td>
<td>WEB L114</td>
<td>Matthew Potts</td>
</tr>
<tr>
<td>2010-005/015</td>
<td>9:40 a.m.-10:30 a.m.</td>
<td>WEB L112</td>
<td>Sebastian Atwood</td>
</tr>
<tr>
<td>2010-006/016</td>
<td>9:40 a.m.-10:30 a.m.</td>
<td>LCB 219</td>
<td>Matthew Potts</td>
</tr>
<tr>
<td>2010-007/017</td>
<td>10:45 a.m.-11:35 a.m.</td>
<td>WEB L120</td>
<td>Teddy Anderson</td>
</tr>
<tr>
<td>2010-008/018</td>
<td>2:00 p.m.-2:50 p.m.</td>
<td>JTB 120</td>
<td>Randall Rojas</td>
</tr>
<tr>
<td>2010-009/019</td>
<td>12:55 p.m.-1:45 p.m.</td>
<td>WEB L120</td>
<td>Randall Rojas</td>
</tr>
<tr>
<td>2010-010/020</td>
<td>2:00 p.m.-2:50 p.m.</td>
<td>LCB 215</td>
<td>Dipak Khanal</td>
</tr>
</tbody>
</table>

Text

Physics, 10th edition, Cutnell and Johnson (not available as a hardcover book for this course).

IMPORTANT NOTE: The only requirement for the text is that you purchase access to the text online as a component of the online homework environment you will be using. The bookstore will NOT be carrying any hardcopies of the text. The homework part of the course comes through WebAssign, a large operation run out of North Carolina State University. WebAssign offers a comprehensive homework facility that will be described in detail during the first class lecture. The text will be available inside the WebAssign environment as a clickable link on your WebAssign homepage. The charge for the text is $60.00 per student per semester. Payment can be made with credit card purchase or using a checking account that is linked to a Paypal account. This is explained when you first log into WebAssign. You will be given some grace period, typically two weeks, before payment must be submitted in order for you to maintain access to WebAssign. Finally, if you feel the need to have a real book in your hands to read material from the text the Physics Department has a number of earlier editions of the same text for your use in the department library (212 JFB). Those texts must remain in the room. The second option is to
purchase a copy of an earlier edition of the text, say the 5th, 6th, 7th 8th or 9th edition, from one of the online services. Depending on the edition you should be able to obtain the text for less than $10.00.

Prerequisites

Trigonometry—Math 1060
College algebra—Math 1050
A previous physics course—either high school physics or college level physics course.

Many of you have already had or are presently enrolled in a calculus course. **We will not use or introduce any elements of calculus in this course.** The College Algebra/Trig part of the prerequisite list will assume that you have reasonable facility and skill in these areas. This means that if you are asked to evaluate \(\sin 35^\circ \) you can do so easily. For more demanding trigonometric requirements such as finding the components of a vector in any of the four quadrants, you will receive instruction on the correct mathematical procedures for doing so. However, it will certainly be easier for you if you already have this skill. If you are concurrently enrolled in trigonometry or wish to try the physics sequence without a trigonometry background, you will likely encounter not only difficulty with learning physics, but also the added difficulty of mastering the mathematics needed to do the physics. This will not be easy; however it has been done successfully by many students in the past!

Solving an algebraic expression for a particular variable or solving 2 equations in 2 unknowns should not tie you up in knots. The word literacy is often used in describing the level of proficiency you should have in algebra and trig and even arithmetic as you enter this sequence. **Solving problems is a major component of this physics sequence.** A large degree of your success here, i.e., the grade you earn, will be determined by how well you do on a wide range of problems you are asked to solve on exams and homework assignments. Getting hung up in problem solving situations because of a missing mathematics background would be unfortunate. And a background in mathematics as it applies to succeeding here is not just that you have a transcript with the required mathematics classes on it, but you actually have the skills and can do the mathematics those classes were supposed to teach you. **I want you to succeed;** moreover, I want you to enjoy this immensely fascinating subject. To put yourself at a disadvantage at the start, and to wind up frustrated and unhappy with your experience in physics would be sad and undesirable. Please come to this sequence **ready** to succeed. Please do not hesitate to talk to me about suggestions for getting ready for this sequence.

Do not think problem solving in a quantitative setting is the only activity you will engage yourself in. It will be a very important activity, but not the only one. Your instructor feels that there are numerous routes to understanding and learning physics. Understanding the fundamental ideas and applying these fundamental ideas to real physical situations to reach a deep level of understanding is our goal. Conceptual analysis will also be a focus of this course. To be able to interpret or construct a graph for some physical event, to give a verbal account for a physical phenomenon, to make an argument or prediction in verbal terms on the basis of physical principles is also a major focus of the course. In fact, that is when physics is fun: when you are walking down the street and you observe something that captures your attention and your head uncontrollably focuses on the basic physics of what you are observing. That really is kind of wonderful and satisfying!

In addition, there is one more strong recommendation. Previous experience in physics, i.e., a high school physics course, or some other college level physics course is strongly recommended. Simply put, it is the experience of this instructor that the single item most often stated by students struggling unsuccessfully with this physics course is having had no previous physics experience. To summarize, you give yourself the optimal chance of success and actual enjoyment of your physics experience if you have had all the following:

a. college algebra
b. trigonometry
c. previous physics experience
It has been my experience that when one or more of (a), (b) and (c) is missing when you arrive, you will most likely be at some disadvantage with respect to classmates who have met all the prerequisites. That does not mean you cannot succeed and do very well. It is merely a statistical statement of your instructor’s experience in this area.

Assistance

1. Discussion instructors.
2. Orest Symko—see office hours posted above.
3. Classmates are often excellent sources for help. Be sure you get one or two phone numbers or e-mail addresses of classmates for help, clarification of notes, updating, items missed, a shoulder to cry on, etc. Group study has been shown in a large number of studies to be an effective method for students to be successful learners in a demanding subject.
4. Physics 2010 Help Lab located in 211 JFB. Hours for the Help Lab are posted in 211 JFB, and on the course web page, http://www.physics.utah.edu/~woolf/2010_symko.html. The Help Lab is maintained by the course TAs. Think of this as a tutoring center with tutors for only Physics 2010 students. There are two features of this kind of area which have become exceedingly important: (1) this room will become an extensively used study area for many physics students; and (2) students will discover that peer, cooperative learning can be a very effective way in which to master a subject. In other words, the tutorial area is not only a wonderful study area for which it is possible to get TA's to answer questions, but also a place where students can interact with each other and help each other. In addition, there are 5 PC’s in this room you can use to enter your homework answers into the WebAssign environment.
5. Ancillary Materials: The Student Companion Site. This website (http://bcs.wiley.com/he-bcs/Books?action=index&itemId=0470223553&bcsld=4768) was developed specifically for Physics, Eighth Edition, and is designed to assist students further in the study of physics. At this site, students can access the following resources: the first few pages of the text show some examples of these resources. -Self-assessment tests -Interactive solutions -Concept Simulations -Interactive LearningWare examples -Review quizzes for the MCAT exam. There are links inside the online text that will take you to numerous materials that can supplement the major course materials.
6. Tutoring: Tutoring is available through the University of Utah Tutoring Center in the Student Services Building, Room 330. There are different prices for individual and group tutoring. See the tutoring web site. Students are given a list of tutors to contact and can schedule a day, evening, or weekend appointment. Low-income students may qualify for free tutoring. For more information call 801-581-5153 or visit www.sa.utah.edu/Tutoring/. Tutoring - Departmental: The Department of Physics will develop a list of tutors from among both undergraduate and graduate students. When available the list can be obtained at the Department’s front office area, JFB 201 (801-581-6901). See Receptionist. The hourly cost for these tutors will be far higher than the rates charged by the Tutoring Center and these rates are set by the individual tutors themselves.
7. WebAssign: Inside the WebAssign site under Communications is the Class Forum. This area will have one topic each homework assignment, exam review, and general discussion. Each forum is a “chatroom” area in which students can pose questions about difficulties they are having with one or more homework problems and other students, TA’s or your course instructor will respond to provide the needed assistance. Given that many students encounter the same issues when having difficulty with a problem, this feature is a potentially invaluable service. The extent to which it provides help depends on how often students post messages, whether asking questions or offering help. The more the students post to the site the more help is offered. This WebAssign feature can be a “gold mine” of help if extensively used.
8. Supplemental Instruction (SI): You can get a feeling for what SI is all about at the “Learning Enhancement Program” website, http://www.sa.utah.edu/lep/si/index.htm. This site gives a brief description of the goal of the SI program. In addition, you can read an article about the program at that site. The following item was provided by SI to participating faculty to include in the course syllabus.
SUPPLEMENTAL INSTRUCTION

The Supplemental Instruction Program, called SI for short, is offered in this course to provide organized study sessions. These sessions are free and open to all students in the course and are led by an undergraduate who has done well in this subject area. Your SI leader will be attending classes, reading the material, and doing any relevant assignments to be prepared for the SI sessions. The purpose of SI is to see that each of you has the opportunity to do as well as you would like to in this course. In SI sessions, we will review, organize, and clarify the material from lectures, teach you ways to do traces and develop memory devices, and help you prepare for exams. Your SI leader will schedule 3 meetings per week convenient to the majority of your schedules. Attendance is voluntary, and you may attend as many or as few sessions as you like. Research on SI both nationally and at the U of U, shows that students who attend SI improve their course grade by about .5.

Regular attendance can boost your grade even more. For more information on the Supplemental Instruction program please visit the website at www.sa.utah.edu/lep and click on the link to Supplemental Instruction.

Your SI leader will schedule 3 meetings per week convenient to the majority of your schedules. Attendance is voluntary, and you may attend as many or as few sessions as you like.

Once the days, times and locations of the sessions are announced, you can enter this information on this chart.

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Session 2</th>
<th>Session 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday from 8:35 am - 9:25 am at LCB 215</td>
<td>Tuesday from 8:35 am - 9:25 am at LCB 215</td>
<td>Friday 9:40 am - 10:30 am at ST 214</td>
</tr>
</tbody>
</table>

At the end of the semester please complete the SI post-survey to provide us with feedback on your experience with SI. Your comments are valued and important to our ability to provide you with effective SI sessions that meet your needs. Let us know what worked and what you would change!

Please do not underestimate the usefulness of the items listed above. Each one can add to the likelihood of your success. Take advantage of the opportunities offered or suggestions made. Moreover, I strongly urge you to work in group settings with your classmates. This means a group of people working together, cooperatively, each contributing to the success of the group. After all, in the "real" world out there, science, as well as most work, is done in a cooperative, group setting. We (the Physics Department) are trying our best to give you the resources you need to succeed in physics.

Coverage

We will cover as much of the first half, Mechanics, Waves, and Thermal Physics, of the text as time allows occasionally skipping sections that are of lesser value. In order to cover much of the material in the 15 chapters (pages 1-472 in the text) some of the material from a number of the later chapters will be omitted or covered quickly and superficially.

Chapter 1: Introduction to Mathematical Concepts
Chapter 2: Kinematics in One Dimension
Chapter 3: Kinematics in Two Dimensions
Chapter 4: Forces and Newton's Laws of Motion
Chapter 5: Dynamics of Uniform Circular Motion
Chapter 6: Work and Energy
Chapter 7: Impulse and Momentum
Chapter 8: Rotational Kinematics
Chapter 9: Rotational Dynamics
Chapter 10: Elasticity and Simple Harmonic Motion
Chapter 11: Fluids
Chapter 12: Temperature and Heat
Chapter 13: The Transfer of Heat
Chapter 14: The Ideal Gas Law and Kinetic Theory
Chapter 15: Thermodynamics

Course Web Page

The URL for the Physics 2010 home page is http://www.physics.utah.edu/~woolf/2010_symko.html. This syllabus, as well as other information will be accessible from the Physics 2010 course web page. The course items, such as exam reviews and the exam review solutions, solutions for exams, the schedule for the help lab, information on all course TAs, supplemental course documents and the link to WebAssign. They will be viewable as easily printable documents in pdf format and are available only on the course web page.

Computer Access

Below is a list of open campus computer areas where any student with a valid University of Utah ID and computer account can go in and use the facilities. This list was obtained from the Campus Computer Labs (http://www.it.utah.edu/services/connected/labs.html) on August 2, 2011 and is subject to change.

Knowledge Commons - Managed by the Marriott Library, Location: 2nd Floor of the Marriott Library, 581-6494, 150 PCs and 90 Macs
Union - Managed by the Marriott Library, Location: Room 40 Union Building, 581-8988, 192 PCs and 35 Macs
College of Humanities, Locations: OSH, LNCO, CTIH, Mid East CTR, Phone: (801) 585-5547, OSH: 55 PCs and 18 Macs, LNCO: 55 PC and 20 Macs, CTIH: 2 PCs and 2 Macs
Sage Point Computer Lab - Managed by the Marriott Library, Location: Building 811 Sage Point, 587-2948, 24 PCs and 10 Macs
Benchmark Computer Lab - Managed by the Marriott Library, Location: Building 820, 24 PCs and 20 Macs
Eccles Health Science Library - Location: Main Floor, Eccles Library, Phone: (801) 581-8771, 45 PCs
School of Business - Location: 130 CRCC, Phone: (801) 587-9962, 54 PCs
College of Education - Location: 106-110 MBH, Phone: (801) 581-4524, 95 PCs
College of Nursing - Location: Room 303, Nursing, Phone: (801) 581-4540
Mathematics - Location: Room 155C Math Center, Phone: (801) 585-9478
Biology - Location: Room 106, Biology, Phone: (801) 581-4587, 27 Macs
College of Law - Location: Law Library, Phone: (801) 581-8383, 20 PCs
Social Work - Location: 290 Soc Wk, Phone: (801) 85-3703, 35 PCs
Health - Location: HPER North 229, Phone: (801) 581-4847
Social & Behavioral Science Tower - Managed by CSBS Computing, Location: 101 Beh S, Phone: (801) 585-8985, 41 PCs
Business Classroom Building - Managed by CSBS Computing, Location: 302A BUC, Phone: (801) 585-8985, 15 PCs
Alfred Emery Building - Managed by CSBS Computing, Location: 330 AEB, Phone: (801) 585-8985, 32 PCs
Stewart Hall - Managed by CSBS Computing, Location: ST 118 (enter through 117), Phone: (801) 585-8985, 5 PC and 4 Macs
Course Mechanics

A. **Homework/Discussion.** 100 points maximum will be applied to your point total based on your work in the on-line homework system, WebAssign. The three (3) lowest homework scores will automatically be dropped. The purpose of the discussion section is to allow you to get all the assistance you need to help you submit finished and correct homework. Homework is submitted within the WebAssign environment (7:00 a.m. on due date—no late homework accepted). Do not disregard the importance of the discussion part of the course. It has the same value as an exam, and you cannot drop the homework grade. The dates of the homework assignments are given in the WebAssign site. The actual assignments are accessed individually by each student when they enter the WebAssign website. Most of 28 of the homework assignments are presently viewable in WebAssign.

For some of you completing course work on-line will be a rather novel experience; and for others, you have been involved in this kind of activity for some time as more and more curricula you encounter have on-line components. As you develop your own approach to this homework system, here are some suggestions.

1. Print off the assignment at least a week before it is due (**very important!**).
2. Work on the homework problems and questions away from the computer. Make sure you develop a thorough approach for working out each homework item with paper and pencil and calculator. You should really establish a thorough and effective procedure for solving a problem. Drawing a careful picture, showing a coordinate system when appropriate, explicitly writing the data set on the paper, giving written names to the algebraic symbols, working out a solution algebraically first and then inserting numbers and units and solving, and finally checking the answers for unit consistency and value plausibility are all just as important in an on-line system as they are in a paper hand-in system.
3. Depending on your access to an internet connected computer, you should then start entering answers. You can enter answers to a single item at a time or even parts of a whole problem at a time and submitting; or even entering multiple items at a time and then submitting. You have lots of flexibility in the submission process. The items are then graded almost instantly so that within moments you will know what items are correct and what items are incorrect. Since you will always have 5 submission opportunities for getting the most credit possible, all is not lost when the result of the submission is the incorrect indicator, the big ugly red "X".
4. At this point you will have to develop your own techniques for handling items that were graded incorrect. One of the Announcements on the WebAssign site is a strategy document for handling incorrect answers to submitted homework problems. By the way, guessing at the correct answer is the worst possible way of dealing with errors. Here is where multiple course resources come in to play to help you deal with incorrect items. Available to you are the discussion sections, the course help area (JFB 211), the WebAssign Communications (forum), study groups, your section TA's, occasional problem-specific resources described next, etc.

B. **Resources within Homework Problems.** In numerous homework problems and a few questions you will see as links one of the following: **ssm, Concept Simulation #.#, Interactive LearningWare #.#, Interactive Solution #.#**. These links take you to the Wiley (the publisher of your text) Student Companion WebSite, in particular, to the item at the website referenced by the #.# identifier. These items are placed in the homework text to offer you assistance for the problem at hand. In the case of the **ssm** link you will be taken to the worked out solution to the problem using the data given in the text version of the problem. The purpose of such a homework is to get you to go carefully over a worked out example. Often the point value for this type of homework item is one point rather than the typical two points.

One final item here: your objective in getting the help you seek to correct errors is to learn and understand the material, not simply to get the right answer to secure the highest homework grade. If all your efforts are aimed at getting the high homework grades without really understanding the
material you are working on, it is very likely you will be looking at dismal exam results. And a poor physics exam score can really ruin your day. During the early days of the course you will need to be thinking of what is the most effective way for you to get the most you can in terms of understanding the physics and being able to successfully use the physics you are working on in new situations, especially new situations you might encounter in exams. Homework is the means to get repeated practice opportunities to acquire deep understanding and a high problem-solving skill level.

C. Exams. There will be four examinations spaced at approximately three week intervals, with the first exam occurring near the end of the fourth full week of class. Exam coverage will be from the previous exam to that work most recently covered in discussion, meaning material you have done homework problems. The exams will be a combination of problem solving and interpretative (conceptual) items. Maximum score will be 100 points on each exam. **There will be no make-ups for any of the exams. At the end of the semester the lowest score of your four exams will be dropped.** This means that the exam portion of your final course grade will be based on the three highest exam scores (or one you missed because you were ill, you were out of town, etc.).

You are allowed to bring to each midterm one (and only one) 3 × 5 file card with whatever information on it you wish. You are allowed two (and only two) 3 × 5 cards for the final exam. Bringing or using any other material, except a hand calculator, is cheating. You need to know your TA's name at the exams. You must use a blue or black pen for the exam. Exams written in pencil will not be re-graded.

EXAM SECURITY: **You must bring a picture ID, either your University ID or a driver’s license with you to every exam as well as the final exam.** These ID’s may be checked during the exams. They will certainly be checked at the final exam.

To repeat, the poorest score earned in the four exams will be dropped. In other words, one of your exams is a freebie. The exam part of the final grade will then be derived from the best three exam scores. Your instructor is generally unwilling to assign letter grade values to the performance on any one exam. He does not begin to think in those terms until the end of the semester when a cumulative course score is generated. However, since it is impossible for students to hold off thinking about such items until late in the semester, the following is offered. This course is graded somewhat on a curve. The mean grade in Physics 2010 will probably be somewhere in the B- range. You now have the information to form an approximate idea of where you stand by examining your separate exam grades relative to the mean for that exam because the mean grade in any exam will be regarded as a B-. Remember also that just before you take your last exam more than 50% of the total course points are still to be earned. That is why it is so difficult to speculate on a potential course grade early in the semester, and why many students who have performed well on the first three exams feel they are so “home free” that they fail to apply the same effort they applied early in the course to the later course material. In more cases than I would like to count such students have had their grade drop dramatically the last two weeks of the semester in the last exam and the final exam because they felt their earlier work had been so excellent it guaranteed a very high course grade. Do not fall into the state of complacency that produces this result.

D. Final Exam. There will be a **comprehensive** Final Exam covering all the chapters of the semester's work. Maximum score for the final exam is 200 points. **Unlike the exams the final exam will not be returned to you.** The purpose of the final is strictly for assessment, unlike the exams, which are for both assessment and instruction. In other words, the final exam is for the instructor to help determine course grades. Of course, you will be allowed to examine your final during the first week of the Physics 2020 semester at the office of the instructor (316 JFB).
E. Exam schedule:

<table>
<thead>
<tr>
<th>Exam</th>
<th>Date</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Friday, September 15</td>
<td>Lecture</td>
<td>Sec. 1 S Beh Aud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time</td>
<td>Sec. 2 S Beh Aud</td>
</tr>
<tr>
<td>2</td>
<td>Friday, October 6</td>
<td>Lecture</td>
<td>Sec. 1 S Beh Aud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time</td>
<td>Sec. 2 S Beh Aud</td>
</tr>
<tr>
<td>3</td>
<td>Friday, November 10</td>
<td>Lecture</td>
<td>Sec. 1 S Beh Aud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time</td>
<td>Sec. 2 S Beh Aud</td>
</tr>
<tr>
<td>4</td>
<td>Friday, December 1</td>
<td>Lecture</td>
<td>Sec. 1 S Beh Aud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time</td>
<td>Sec. 2 S Beh Aud</td>
</tr>
</tbody>
</table>

Final Thursday, December 14 3:30-5:30 pm Sec. 1 WEB L104

All exams will be taken on Friday. The final is scheduled for the Thursday, December 14 of "Finals Week."

On the Thursday before all exams we will hold a special exam review sessions, typically at 2:00 pm in JFB 101. Attendance is optional.

REMINDER: Only the "best" three exam scores will count toward your final grade.

WARNING: The date and time of the Final Exam is set by the University Scheduling Office in consultation with the course instructor, not the department. Regard the time of the final exam written as in stone. It WILL NOT be altered to fit anyone’s plane reservations or desire to get away from the University earlier than this final exam. Please make plane reservations, if you need to do so, after you take the final exam.

F. Grading:

Exams 300 points
Final Exam 200 points
Homework 100 points

Total points 600 points total

The final course grade will be determined by how many total points out of the maximum of 600 points you earn. You can anticipate a course mean somewhere in the B- range as a traditional mean for this physics course.

G. Exam Regrading. If you feel that the grader may have made an error in grading part of an exam, you may request a re-grading of the problem(s). However, any request for re-grading of a problem on an exam must be made before the following exam. You must fill out a re-grade form (found on this web site) and attach it to the entire problem (not just one part) to be re-graded. (Do NOT submit problems that you are not asking to be re-graded.) You must use a separate re-grading form for each problem. These sheets should be given to Professor Symko in class before the next mid-term exam. In the case of Midterm #4 (the last midterm), you must submit a request for re-grading before the end of the last course lecture on December 12. Problems will NOT be re-graded after the next exam occurs. Exams MUST be done in black or blue pen (NOT red), in order to be eligible for a re-grade. No exam done in pencil will be re-graded. When you submit a request for the re-grading of a problem, the entire problem will be re-graded, not just the parts that you are disputing. It is usually the case that you will not lose points by submitting a re-grade, but this is not guaranteed. Submitted problems for re-grade will be evaluated and returned in your discussion section.
H. Adding, Dropping, and Withdrawing: Most of the information concerning adding, dropping, or withdrawing from Physics 2010 can be found in links at:
http://registrar.utah.edu/academic-calendars/fall2016.php

I. ADA. The following information is being provided at the request of the University of Utah. In accordance with ADA (Americans with Disabilities Act of 1990) compliance: The University of Utah seeks to provide equal access to its programs, services and activities for people with disabilities. If you will need accommodations in the class, reasonable prior notice needs to be given to the Center for Disability Services, 162 Olpin Union Building, 581-5020 (V/TDD). CDS will work with you and the instructor to make arrangements for accommodations. You can learn more about CDS at http://disability.utah.edu/

A Final Reminder

Many of you will find your experience in Physics a challenging, thoroughly enjoyable experience. Success in problem solving and glimpsing at the inner workings of natural phenomena are pursuits you will relish. Some of you, however, will find this experience difficult and frustrating. The dreaded "story problems" will seem relentless and unrewarding. I do want you to feel your experience in this sequence was worthwhile and enriching. As surprising as this may seem many of the skills you acquire in problem solving in this course will apply to other courses you will take subsequent to physics and your career. The understanding of basic physics has much to say about the basic workings of nature and enormous insight into the career pursuits most of you are aiming toward. If you begin to have problems with the class please come to my office so that we can talk about it. I can make suggestions on how to approach this subject, i.e. how to approach problem solving, how to organize your study efforts, and how to study for an exam. Often they work. There are techniques I can offer that could improve your chances of success. Let's face it; the better you do in the course, the more you will like the subject. So please, at the first sign of trouble come on in!!! Also, it is important that you attend the lectures and the discussion sections.

Honesty

Cheating of any kind on an exam is a very serious violation of University rules and is unethical. Students caught cheating will receive a failing grade for the course and will be sent on to the University Disciplinary Committee for further action. All teaching assistants, including the course Marshal, and the administrative assistant for the course are to be considered proxies for Professor Symko when you are dealing with them regarding this course. They are to be listened to and treated with respect at all times.

All students and faculty need to be aware of important changes in the Student Code that went into effect in the last couple of years. Students now have only 20 business days to appeal grades and other "academic actions" (e.g., results of comprehensive exams). The date that grades are posted on the web is considered the date of notification. A "business day" is every day the university is open for business, excluding weekends and University-recognized holidays. If the student cannot get a response from the faculty member after ten days of reasonable efforts to contact him or her, the student may appeal to the Department Chair if done within 40 days of being notified of the academic action. Students should definitely document their efforts to contact a faculty member. Similarly, faculty members who discover or receive a complaint of academic misconduct (e.g., cheating, plagiarism) have 20 business days to "make reasonable efforts" to contact the student and discuss the alleged misconduct. Within 10 more business days the faculty member must give the student written notice of the sanction, if any, and the student's right to appeal to the college Academic Appeals Committee.

All students and faculty members are urged to consult the exact text of the Student Code if a relevant situation arises. The code is on the University web site at http://www.admin.utah.edu/ppmanual/8/8-10.html.
Important Dates

Last day to add without permission code is Friday, August 25.
Last day to drop (delete) classes with no tuition penalty is Friday, September 1.
Last day to add classes is Friday, September 1.
Last day to elect CR/NC options is Friday, September 1.
Last day to withdraw from term length classes is Friday, October 20.
Last day of class is Thursday, December 7.

NOTE: It is now university policy that your courses will be irrevocably DROPPED if tuition is not paid on time!

Students with Disabilities

The University of Utah seeks to provide equal access to its programs, services and activities for people with disabilities. If you will need accommodations in this course, reasonable prior notice must be given to the instructor and to the Center for Disability Services, 162 Olpin Union Bldg, 581-5020 (V/TDD) to make arrangements for accommodations. You are strongly encouraged to come and talk to the instructor about your disability and necessary accommodations within the first two weeks of the semester. CDS will work with you and the instructor to make arrangements for accommodations. You can learn more about CDS at http://disability.utah.edu/

Holidays

September 4 Labor Day
October 8-15 Fall Break
November 23-26 Thanksgiving Holiday