THIRD MIDTERM

A car on a frictionless roller-coaster is released from rest at a height h as shown. At the top of the hump the radius of the curvature of the track is R. The height of the top of the hump is shown in the diagram.

(a) If the apparent weight of a person in the car is 1/3 of his normal weight at the top of the hump (point B), calculate h in terms of R, g and numbers. The person and car are assumed small compared to R.

(b) For the same starting conditions, calculate the apparent weight of a 100 kg person at point C, if the radius of the curvature at C is 2R.

Part a)

$$mgh = \frac{1}{2}m{v_B}^2 + mgR \quad (+5 \text{ if correct})$$

$$mg - N = \frac{m{v_B}^2}{R} \quad (+5 \text{ if correct})$$

$$N = \frac{1}{3}mg \quad \Rightarrow m{v_B} = \left(mg - \frac{1}{3}mg \right)R = \frac{2}{3}mgR$$

$$mgh = \frac{1}{2} \left(\frac{2}{3}mgR \right) + mg3R \quad \Rightarrow h = \frac{10}{3}R \quad (+5 \text{ if correct})$$

Part b)

$$mgh = \frac{1}{2}m{v_C}^2 \quad m{v_C}^2 = 2mgh = \frac{10}{3}mgR \quad (+3 \text{ if correct})$$

$$N - mg = \frac{m{v_C}^2}{2R} \quad (+3 \text{ if correct})$$

$$N = \left(\frac{10}{3} + 1 \right)mg = \frac{13}{3}mg = 433 \text{ kg or } 4.25 \text{ N} \quad (+4 \text{ if get } N)$$