In the roller coaster loop-the-loop shown, the frictionless car starts with zero velocity at a height h. The normal force at the top of the loop (point A) is found to be three times the weight of the cart. Take the radius of the loop as R.

15 pts. (a) Calculate h in terms of R and g.

15 pts. (b) Calculate the normal force on the car at point B where $\theta = 30^\circ$ from the horizontal. Express this as a number or fraction times the weight of the car.

Most common errors:

1) N pointing in opposite direction of what it should be
2) Incorrect calculation of h_B
3) Mixing up \sin, \cos, and \tan
4) Putting in KE_{rot} or leaving out PE_a or PE_b