THIRD MIDTERM

Name (print) P. Hari
Name (signed)

Discussion Instructor (circle one): Chen Emerson Iguchi Stoops
Discussion Section #

SHOW ALL WORK!!!!
REPORT ALL NUMBERS TO THREE SIGNIFICANT FIGURES!
Use the conversion constants and data given on the front page.

A film of oil is set up on the surface of water as shown. Light is incident perpendicular to the surface from the air side. The film is 1.45×10^{-6} m thick.

(4) Calculate all of the wavelengths in visible light (400 - 700 nm) that show constructive interference maxima in reflection.

(4) Calculate all of the wavelengths of visible light that show constructive interference maxima in transmission.

\[\text{air} \quad n = 1 \quad \text{oil} \quad n = 1.25 \quad \text{water} \quad n = 1.33 \]

a) Since both the reflected rays are different from the incident by a phase shift of π, they are in phase when they interfere constructively.

\[\lambda = \frac{2nt}{m} \]

\[n = 1.25 \]

\[\lambda_1 = 2 \times 1.25 \times 1.45 \times 10^{-6} \text{ m} \]

\[\lambda_1 = 2 \times 1.25 \times 1.45 \times 10^{-6} \text{ m} \]

3. \(m = 6 \) \(\lambda_1 = 604 \text{ nm} \) 605
3. \(m = 7 \) \(\lambda_2 = 518 \text{ nm} \) 518.6
3. \(m = 8 \) \(\lambda_3 = 453 \text{ nm} \) 453.8
3. \(m = 9 \) \(\lambda_4 = 403 \text{ nm} \) 403.0

b)

Since the phase difference is π, constructive interference occurs.

\[2nt = (m + 1/2) \lambda \]
\[\alpha t = (m + y_z) \lambda \]

\[\lambda = \frac{\alpha t}{(m + y_z)} \]

\[\eta = 1.25 \]
\[t = 1.45 \times 10^{-6} \]

\[\lambda_m = \frac{2 \times 1.25 \times 1.45 \times 10^{-6}}{(m + y_z)} \]

\[m = 5 \]

\[\begin{align*}
\lambda_5 &= 659 \text{ nm} \\
\lambda_6 &= 558 \text{ nm} \\
\lambda_7 &= 483 \text{ nm} \\
\lambda_8 &= 426 \text{ nm}
\end{align*} \]