1. (a) A very long, thin, insulating rod carrying uniform positive linear charge density \(\lambda \) is oriented vertically. A small bead of mass \(m \) carrying positive charge \(q \) is attached to the rod by means of a light thread of length \(L \), as shown in the sketch at the right. When equilibrium is established, the perpendicular distance from the bead to the rod is \(x \).

(i) Use Gauss’s law to find the magnitude and direction of the electric field \(E \) due to the rod at the location of the bead.

\[
E = \frac{\lambda}{2\pi \varepsilon_0 x} = \frac{2\lambda k_e}{x} \quad \text{(since } k_e = \frac{1}{4\pi \varepsilon_0})
\]

(ii) Assuming the angle \(\theta \) is small enough that the small angle approximation \(\sin \theta \approx \theta \approx \tan \theta \) holds, derive a formula for \(x \) in terms of \(m \), \(q \), \(L \), \(g \), \(k_e \), and \(\lambda \).

\[
(x = \frac{2\lambda k_e q}{mg})
\]
1. (cont'd)

(b) A thin insulating rod of length 2L lies along the x-axis from -L to L, as shown in the sketch at the right, and it carries nonuniform linear charge density \(\lambda = \sigma |x| \), where \(\sigma \) is a positive constant.

(i) What are the SI units of \(\sigma \)? \[2\]

(ii) Set up an integral and calculate (in terms of \(k_e, \sigma, L, \) and \(y \)) the electrostatic potential \(V \) at \(P \), the point on the positive y-axis having coordinates (0, \(y \)). \[12\]

(iii) Use differentiation to find a symbolic expression for the y-component of the electric field (that is, \(E_y \)) at point \(P \). What will the value of \(E_y \) be if \(L = \sqrt{3} y \)? \[6\]

(b) (i) \(\lambda \) is in \(\frac{C}{m} \) and \(x \) is in m, so \(\sigma \) must have units of \(\frac{C}{m^2} \).

(ii) \(\frac{dV}{dr} = \frac{k_e \lambda}{r} = \frac{k_e \sigma x}{\sqrt{x^2 + y^2}} \Rightarrow V = 2 \int_0^L \frac{k_e \sigma x \, dx}{\sqrt{x^2 + y^2}} \) (by symmetry)

Let \(u = x^2 + y^2 \Rightarrow du = 2x \, dx \), \(\sigma \) is constant.

\[V = \int_{y^2}^{L^2 + y^2} \frac{k_e \sigma}{\sqrt{u}} \, du = k_e \sigma \int_{y^2}^{L^2 + y^2} u^{-\frac{1}{2}} \, du = k_e \sigma \left[\frac{u^{\frac{1}{2}}}{\frac{1}{2}} \right]_{y^2}^{L^2 + y^2} = 2k_e \sigma \left[\frac{(L^2 + y^2)^{\frac{1}{2}} - y}{y^2} \right] \]

(iii) \(E_y = -\frac{dV}{dy} = -2k_e \sigma \left[\frac{\frac{y}{y^2 + L^2} - \frac{1}{2} (2y) - 1}{2} \right] \)

\[\Rightarrow E_y = -2k_e \sigma \left[\frac{\frac{y}{\sqrt{y^2 + L^2}} - 1}{2} \right] \]

If \(L = \sqrt{3} y \), then \(E_y = -2k_e \sigma \left[\frac{\frac{y}{\sqrt{y^2 + 3y^2}} - 1}{2} \right] = -2k_e \sigma \left[\frac{y}{\sqrt{4y^2}} - 1 \right] = -2k_e \sigma \left(\frac{\sqrt{3}}{3} \right) = \frac{4k_e \sigma}{3} \),

\[\Rightarrow E_y = \frac{4k_e \sigma}{3} \]
2. (a) Consider four point charges q_1, q_2, q_3, and q_4 that lie in the plane of the page as shown in the sketch at the right. Imagine a three-dimensional closed surface whose cross section in the plane of the page is indicated.

(i) Which of these charges contribute to the net electric flux through the surface? [2] q_2 and q_3

(ii) Which of these charges contribute to the resultant electric field at point P? [2] All of them: q_1, q_2, q_3, and q_4.

(iii) Are your answers to (i) and (ii) the same or different? Explain why this is so. [4]

Different. Gauss's law says that the total electric flux through a closed surface (which is a global property) depends only on the net charge inside the surface, whereas the resultant electric field at a point (which is a local property) depends on all the charges present.

(iv) If the net charge enclosed by a gaussian surface is zero, does this mean that the electric field is zero at all points on the surface? Justify your answer. [3]

No. A net enclosed charge of zero ensures that the electric flux $\mathbf{\Phi}_E = \oint \mathbf{E} \cdot d\mathbf{A} = 0$ (globally), but it is not necessarily the case that $\mathbf{E} = \mathbf{0}$ at every point on the surface (locally) in order for this to be true.

(v) If the electric field is zero at all points on a gaussian surface, does this mean that the net charge enclosed by the surface is zero? Justify your answer. [3]

Yes. If $\mathbf{E} = \mathbf{0}$ everywhere on the surface, then the flux $\mathbf{\Phi}_E = \oint \mathbf{E} \cdot d\mathbf{A}$ must certainly be zero, which (by Gauss's law) assures us that $q_{\text{in}} = 0$.

(b) A slab of insulating material of thickness d lies in the yz-plane and carries uniform positive volume charge density ρ. The slab is infinite in the y and z directions, and x is measured from the centre of the slab, as shown in the sketch at the right.

(i) Use Gauss's law to find the magnitude of the electric field:
- inside the slab as a function of the distance from the yz-plane (that is, find E for $|x| \leq d/2$); \[7\]
- outside the slab (that is, find E for $|x| \geq d/2$). \[3\]

(ii) Given that the energy density of the electric field is $\frac{1}{2} \varepsilon_0 E^2$, use integration, together with the answer to the first part of (b) (i), to find an algebraic expression for the total electrostatic energy stored in a portion of the slab of area A (inside the slab only, not outside it). \[10\]
(b) (ii)

Total energy in a portion of slab having cross-sectional area A:

$$\int dU = \int u \, dV = 2 \int_0^{\frac{d}{2}} \left(\frac{\rho x}{2 \varepsilon_0} \right) A \, dx$$

both sides of the centre plane

$$\Rightarrow U = \int_0^{\frac{d}{2}} \frac{\rho^2 A}{2 \varepsilon_0} x^3 \, dx = \frac{\rho^2 A x^4}{3 \varepsilon_0} \bigg|_0^{\frac{d}{2}} = \frac{\rho^2 A (\frac{d}{2})^3}{3 \varepsilon_0}$$

$$\Rightarrow U = \frac{\rho^2 A d^3}{24 \varepsilon_0}$$
3. (a) A parallel-plate capacitor has plate area A and plate separation d. Two different dielectrics (having dielectric constants \(\kappa_1 \) and \(\kappa_2 \)) each fill half the space between the plates, as shown in the figure at the right. In terms of A, d, \(\varepsilon_0 \), \(\kappa_1 \), and \(\kappa_2 \), derive a formula for the capacitance. (Hint: Think about what it means to be connected in series or in parallel.) [6]

(b) Three capacitors with vacuum between their plates (having capacitances 2.0 \(\mu \text{F} \), 1.0 \(\mu \text{F} \), and 5.0 \(\mu \text{F} \)) are connected as shown across a battery of emf \(\varepsilon = 12 \text{ V} \).

(i) What is the capacitance of the single capacitor that is equivalent to the combination of the three capacitors? [5]

(ii) What is the charge on the 2.0 \(\mu \text{F} \) capacitor? [5]

(iii) What is the potential difference across the 5.0 \(\mu \text{F} \) capacitor? [4]

(iv) How much electrostatic energy is stored in the system of capacitors? [3]

(v) If the space between the plates of the 1.0 \(\mu \text{F} \) capacitor is filled with a slab of dielectric material having \(\kappa = 3.0 \), how much energy is now stored in the capacitors? [5]

(vi) As the dielectric slab was inserted in part (v), how much work was done, and was it done by the agent exerting a force to overcome electrostatic repulsion in order to insert the slab, or was it done by electrostatic forces attracting the slab into the space between the plates? [4]

(a) The arrangement as shown is clearly equivalent to two separate capacitors in parallel, each having plate area \(\frac{A}{2} \):

\[
\frac{\varepsilon_0 A}{d} \left(\frac{X_1 + X_2}{2} \right)
\]

The equivalent capacitance is then

\[
\frac{X_1 \varepsilon_0 \left(\frac{A}{2} \right)}{d} + \frac{X_2 \varepsilon_0 \left(\frac{A}{2} \right)}{d}
\]

(P.T.O.)
(b) \(\frac{1}{C} = \frac{1}{2\mu F} + \frac{1}{1\mu F + 5\mu F} = \frac{1}{2\mu F} + \frac{1}{6\mu F} = \frac{3}{6\mu F} + \frac{1}{6\mu F} \)

\[\frac{1}{C} = \frac{4}{6\mu F} \Rightarrow C = \frac{6\mu F}{4} \Rightarrow C = 1.5\mu F \]

(ii) The charge on the 2\(\mu F \) capacitor is the same as on the \(1\mu F - 5\mu F \) parallel combination, since it is in series with this combination. Also, this charge is the same as on the single equivalent capacitance found in (i). Therefore,

\[Q = CV = (1.5\mu F)(12V) \Rightarrow Q = 18\mu C \]

(iii) The p.d. across the 2\(\mu F \) capacitor is \(V = \frac{Q}{2\mu F} = \frac{18\mu C}{2\mu F} = 9V \), so the p.d. across the 5\(\mu F \) capacitor (or, for that matter, across the 1\(\mu F \) capacitor) must be \(12V - 9V = 3V \).

(iv) \(U = \frac{1}{2} CV^2 = \frac{1}{2} (1.5\mu F)(12V)^2 \Rightarrow U = 108\mu J \)

(v) The filled capacitor now has capacitance 3\(\mu F \) instead of 1\(\mu F \), so the new equivalent capacitance \(C' \) of the system is found from

\[\frac{1}{C'} = \frac{1}{2} + \frac{1}{3+5} = \frac{1}{2} + \frac{1}{8} = \frac{4}{8} + \frac{1}{8} = \frac{5}{8} \]

\[\Rightarrow C' = \frac{8}{5} \Rightarrow C' = 1.6\mu F \]. Therefore, the new energy is \(U' = \frac{1}{2} C' V^2 = \frac{1}{2} (1.6\mu F)(12V)^2 \Rightarrow U' = 115.2\mu J \).

(P.T.O.)
(vi) Because the battery remains connected as the dielectric is inserted, charge ΔQ flows from the battery during the insertion process, with $\Delta Q = C'V - CV = (C' - C)V = (1.6 \mu F - 1.5 \mu F)(12 V)$
$\Rightarrow \Delta Q = (0.1 \mu F)(12 V) = 1.2 \mu C$, and the (positive) work done by the battery on this charge is $(\Delta Q)V = (1.2 \mu C)(12 V) = 14.4 \mu J$.
The total work done, however, is $U' - U = 115.2 \mu J - 108 \mu J = 7.2 \mu J$, so we conclude that there must have been work of $-7.2 \mu J$ done on the dielectric as it was inserted. Because that work was negative, we know that electrostatic forces attracted the slab as it was being introduced between the plates.