Consider a substance having molar heat capacity at constant volume c_v, given by $c_v = aT^3$, where a is a constant and T is the absolute temperature. Suppose u_0, the molar internal energy at $0^\circ K$ and infinite volume, is known. The equation of state is $P = bT/v^5 - d/v^6$, where b and d are known constants, P is the pressure, T is the absolute temperature, and v is the molar volume. In terms of the given constants and u_0 and v, calculate the molar energy at temperature T.

\[
\text{Energy Equation} \quad \frac{\partial u}{\partial T} = T \left(\frac{\partial P}{\partial T} \right)_v - P
\]

\[P = bT/v^5 - d/v^6\]

\[T \left(\frac{\partial P}{\partial T} \right)_v = bT/v^5 = \Delta P + d/v^6\]

\[\Rightarrow \frac{\partial u}{\partial v} = d/v^6\]

\[du = \frac{\partial u}{\partial v} dv + \frac{\partial u}{\partial T} dT = d/v^6 dv + \Delta u dT\]

But $\Delta u = aT^3$

\[\Rightarrow \quad u = \frac{-d}{5v^5} + \frac{aT^4}{4} + \text{const}\]

When $T = 0^\circ K$ and $v = \infty$, $u = u_0 \Rightarrow \text{const} = u_0$

\[\therefore \quad U = u_0 - \frac{d}{5v^5} + \frac{aT^4}{4}\]