Energy and Sustainability
Physics 3150
Topics Include:
Energy and our Planet
Environment
Hydro Energy
Fossil Fuels
Nuclear Power
Wind Energy
Biomass
Solar Energy
Electricity and the Grid
Global Distribution
Heat and Thermodynamics
Mechanical Energy
Engines and Efficiency
SYLLABUS SPRING 2018
ENERGY AND SUSTAINABILITY
PHYS-3150

Instructor: Orest G. Symko
316 J.C. Fletcher Building(JFB), Tel. (801)581-6132, e-mail: orest@physics.utah.edu
Office hours: 8:30a.m. to 9:30 a.m., Tuesday, Thursday, or by appointment
Secretary: Nancy Kurtzeborn, 201-A JFB, Tel. (801)585-1754

Aim: The course is an introduction to the global issues of energy and sustainability which are
facing us. It deals with the conversion of various forms of energy for practical uses around the
world. It introduces concepts in energy and the physical principles used in transforming energy
and storing it. In particular, the course examines energy technologies in the fuel cycle stage for
fossil energy (oil, gas, synthetic), nuclear energy (fission, fusion), and renewable energy (solar,
biomass, wind, hydro, and geothermal) along with storage, transmission, disposal, and
conservation issues. Energy technology systems will be analyzed and evaluated within the
context of global environmental goals. Historical, international, and current issues will also
be presented.

W.W. Norton & Co.

Tests: 1. February 15, 2018
2. April 12, 2018
3. FINAL: Tuesday, May 1, 2018, 10:30 a.m. - 12:30 p.m.

Absolutely NO make-up tests!

Grading: 2 tests at 15% each 30% Information:
1 final 30%
8 assignments at 40%
5% Total 100%

Information:
Last day to drop classes: Jan.19
Martin Luther King Holiday: Jan.15
President’s Day Holiday: Feb. 19
Last day to withdraw: March 9
Spring Break: March 18-25
Classes end: April 24
Final Exam Period: April 26-May 2

The University of Utah seeks to provide equal access to its programs, services, and activities for
people with disabilities. If you will need accommodations in the class, reasonable prior notice
needs to be given to the Center for Disability Services, 162 Olpin Union Bldg, 581-5020. CDS will
work with you and the instructor to make arrangements for accommodations. All written
information in this course can be made available in alternative format with prior notification to
Center for Disability Services.
1. Introduction: Energy in Our Planet.
 History, concepts, linear and exponential growth, our changing planet.

2. Energy and Its Forms.
 Conservation of energy, kinetic and potential, power, machines, GDP.

3. Thermal Energy.
 Heat, temperature, thermodynamics, heat transfer, second law of thermodynamics, heat engines, efficiency, entropy, age of our planet.

 Carbon cycle, petroleum, oil exploration, consequences, oil shale and tar sands, fracking, Hubbert's Peak.

5. Nuclear Energy.
 Fission, nuclear reactors, fusion, failures, waste, radiation, bombs.

 The Earth, generation of electricity, heat pumps.

 The Sun, solar insolation, heating and cooling, electricity, efficiency.

 Photosynthesis, energy crops, conversion, waste.

 Global wind patterns, turbines, power and efficiency, performance.

 Hydroelectric, tidal, wave energy, thermal gradients, salinity gradient.

11. Electricity.
 Generation, capacity, transmission, distribution, AC and DC, smart grids.

12. Climate.
 Science, Greenhouse effect, a tale of three planets, carbon, changes.

 Marketing, pollution, the environment, sustainability, technology, global issues.
REFERENCES:

- Homebrew Wind Power, Dan Bartmann and Dan Fink, 2009, Buckville Publications LLC.
- Energy, the Subtle Concept by Jennifer Coopersmith, Oxford University Press, 2010