1. Consider a free spin $1 / 2$ particle, i.e. $H_{0}=\frac{p^{2}}{2 m}$
a. What is the 2×2 matrix representation of the S_{x}^{2} operator in the eigenbasis of S_{z} operator? (6 points)
b. If we add a term to the Hamiltonian as $H_{\text {int }}=c S_{x}^{2}$, what are corrections to the energy eigenvalues in this new system? (6 points)
c. Let us start with a state as $\left|s_{z}=1 / 2\right\rangle$ with momentum p_{0}, how does such a state evolve with time after we add $H_{\text {int }}$? (8 points)
2. Consider an electron running in the Coulomb potential and suppose the electron (spin $1 / 2)$ has an orbital angular momentum as $l=1$.
a. What are possible values of the total angular momentum? (4 points)
b. Label the spin operator of the electron as \vec{S} and the electron's orbital angular momentum operator as \vec{L}. Let us introduce an interaction as $H_{\text {int }}=c \vec{S} \cdot \vec{L}$. What are the energy eigenstates for such a system? (8 points)
c. Label the z-component of the orbital angular momentum as $m \hbar$, and label $j(j+1) \hbar^{2}$ as the eigenvalue of the square of the total angular momentum operator, $\vec{J}=\vec{L}+\vec{S}$. If we measure the total angular momentum, j, on the state $\left|l=1, m=1 ; s=1 / 2, s_{z}=-1 / 2\right\rangle$, what is the probability of finding $j=1 / 2$? (8 points)
3. Consider an electron moving in an electromagnetic field, characterized by the gauge potential as ϕ and \vec{A}. Let us perform a gauge transformation as $\phi^{\prime}=\phi$ and $\overrightarrow{A^{\prime}}=\vec{A}+\nabla \Lambda(\vec{x})$.
a. How is the wavefunction of the electron after the gauge transformation related to the old wavefunction? (6 points)
b. How does the Heisenberg equation of motion for $\frac{d x_{i}}{d t}, \frac{d x_{i}}{d t}=\frac{\left[x_{i}, H\right]}{i \hbar}=\frac{p_{i}-e A_{i} / c}{m}$, change under the gauge transformation? (6 points)
c. Demonstrate that $\left\langle\frac{d x_{i}}{d t}\right\rangle$ is unchanged under such a gauge transformation. (8 points)
