This exam is being graded with student identity anonymized. Please put your name and Unid on this page ONLY!!!

Name \qquad

Unid

This exam has a strict time limit of two (2) hours. It will start at $1: 00 \mathrm{pm}$ and finish at $3: 00 \mathrm{pm}$. There are three (3) problems.

Instructor's suggestions:

- Read every problem before you attempt to solve it.
- Do not spend more than 40 minutes on a problem until you have finished all the other problems.
- If you get stuck, move on to the next problem and come back to this one later.
- Integral Tables, Vector derivatives, Math Identities, Spherical Harmonics, Legendre polynomials and other special functions can be found in the "math" folder in CANVAS for this class.
- You can always use a symbolic math package, such as Maple, to evaluate integrals and do matrix multiplication.

WRITE ONLY ON THE FRONT SIDE OF PAGE DO NOT WRITE YOUR NAME OR UNID

PHYS 7110 Fall 2022

Problem 1 [20 pts]

In this problem, we will show that the 4 -gradient of an invariant function $f(x, y, z, t)$,

$$
F_{\alpha}=\partial_{\alpha} f=\frac{\partial f}{\partial X^{\alpha}}=\left[\begin{array}{l}
\frac{1}{c} \partial f / \partial t \\
\partial f / \partial x \\
\partial f / \partial y \\
\partial f / \partial z
\end{array}\right]
$$

is a covariant 4 -vector. Follow the steps below. We take the usual situation where the moving frame S^{\prime} moves in the $+x$ direction relative to the lab frame S at velocity $v=\beta c$. The axes of the two systems are parallel as shown, and the origins O and O^{\prime} coincide at $t=t^{\prime}=0$.
(a) [4 pts] We can treat the S frame space time coordinates t, x, y, z as functions of those in the S^{\prime} frame -i.e. $t=t\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right), x=x\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right), y=y\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right), z=z\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$. Write down these four functions, you may include c, β, and $\gamma=1 / \sqrt{1-\beta^{2}}$. (These constitute the inverse Lorentz transformation).
(b) [6 pts] Now find all 4 components of $F^{\prime}{ }_{\alpha}=\partial_{\alpha}{ }^{\prime} f=\partial f / \partial X^{\prime \alpha}$ - i.e. $\partial f / \partial t^{\prime}, \partial f / \partial x^{\prime}, \partial f / \partial y^{\prime}$, and $\partial f / \partial z^{\prime}$ by chain rule -- for example

$$
\frac{\partial f}{\partial z^{\prime}}=\frac{\partial f}{\partial t} \frac{\partial t}{\partial z^{\prime}}+\frac{\partial f}{\partial x} \frac{\partial x}{\partial z^{\prime}}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial z^{\prime}}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial z^{\prime}}
$$

You must compute each $\partial X^{\mu} / \partial X^{\prime v}$ explicitly. Your answers should contain $\partial f / \partial t, \partial f / \partial x, \partial f / \partial y$, and $\partial f / \partial z$.

Assuming F_{α} is a covariant 4-vector, we can also just apply Lorentz transformation $F^{\prime \mu}=L^{\mu}{ }_{v} F^{v}$ (Einstein summation implied over repeated Greek indices). However, this is the transformation equation for a contravariant 4-vector
(c) [4 pts] You must first convert F_{α} from its covariant form to its contravaraint form F^{α}. This operation involves something like a multiplication of a 4×4 matrix ($2^{\text {nd }}$ order tensor) on the left of a column 4vector. Write out your answer in the form

$$
F^{\alpha}=\left[\begin{array}{l}
? \\
? \\
? \\
?
\end{array}\right]
$$

(d) [6 pts] Now apply the forward (from S to S^{\prime} coordinates) Lorentz transformation to obtain $F^{\prime \alpha}$. From these result, and NOT those from parts (a) and (b), find $\partial f / \partial t^{\prime}, \partial f / \partial x^{\prime}, \partial f / \partial y^{\prime}$, and $\partial f / \partial z^{\prime}$. Again your answers should contain $\partial f / \partial t, \partial f / \partial x, \partial f / \partial y$, and $\partial f / \partial z$. Are these the same as what you got for part (b)?
(a) The inverse Lorentz traceformaton is given by

$$
\begin{aligned}
& X^{\alpha}=\left(L^{-1}\right)^{\alpha} \alpha X^{\prime \sigma} \\
& {\left[\begin{array}{l}
c t \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{cccc}
\gamma & \beta \gamma & 0 & 0 \\
\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]}
\end{aligned}
$$

Or:

$$
\begin{aligned}
& c t=\gamma\left(c t^{\prime}+\beta x^{\prime}\right) \Rightarrow\left\{\begin{array}{l}
t=t\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)=\gamma\left(t^{\prime}+\frac{\hat{c}}{c} x^{\prime}\right) \\
x=\gamma\left(\beta c t^{\prime}+x^{\prime}\right) \\
y=y^{\prime} \\
z=z^{\prime}
\end{array}\left\{\begin{array}{l}
\\
y=y\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)=\gamma\left(\beta c t^{\prime}+x^{\prime}\right) \\
\left.z=z\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=x^{\prime}, y^{\prime}, z^{\prime}\right)=z^{\prime}
\end{array}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) by defu: } \\
& F_{\alpha}^{\prime}=\frac{\partial f^{\prime}{ }^{m}{ }^{m} \text { variant }}{\partial X^{\prime \alpha}}=\frac{\partial f^{\prime}}{\partial X^{\prime \alpha}}=\left[\begin{array}{c}
\frac{1}{c} \frac{\partial f}{\partial t^{\prime}} \\
\frac{\partial f^{\prime}}{\partial x^{\prime}} \\
\frac{\partial t}{\partial y^{\prime}} \\
\frac{\partial^{\prime}}{\partial z^{\prime}}
\end{array}\right] \\
& \frac{\partial f}{\partial t^{\prime}}=\frac{\partial f}{\partial t} \frac{\partial t}{\partial t^{\prime}}+\frac{\partial f}{\partial x} \frac{\partial x}{\partial t^{\prime}}+\frac{\partial f}{\partial y} \frac{\partial \tilde{y}^{0}}{\partial t^{\prime}}+\frac{\partial f}{\partial z} \cdot \frac{\partial x^{\prime}}{\partial f^{\prime}} \\
& =\gamma \frac{\partial f}{\partial t}+\gamma \beta c \frac{\partial f}{\partial x} \\
& \frac{1}{c} \frac{\partial f}{\partial t^{\prime}}=\gamma\left(\frac{1}{c} \frac{\partial f}{\partial t}+\beta \frac{\partial f}{\partial x}\right) \\
& \frac{\partial f}{\partial x^{\prime}}=\frac{\partial f}{\partial t} \frac{\partial t}{\partial x^{\prime}} t \frac{\partial f}{\partial x} \frac{\partial x}{\partial x^{\prime}}+\frac{\partial f}{\partial y} \frac{\partial y^{10}}{\partial x^{\prime}}+\frac{\partial f}{\partial z} \frac{\partial z^{\prime}}{\partial x^{\prime}} \\
& \frac{\partial f}{\partial x^{\prime}}=\gamma\left(\beta \cdot \frac{1}{c} \frac{\partial f}{\partial t}+\frac{\partial f}{\partial x}\right) \\
& \frac{\partial f}{\partial y^{\prime}}=\frac{\partial f}{\partial t} \frac{\partial t^{\mu 0}}{\partial y^{\prime}}+\frac{\partial f}{\partial x} \frac{\partial \mu^{0}}{\partial y^{\prime}}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial y^{\prime}}=\frac{\partial f}{\partial z} \frac{\partial t^{\prime \prime}}{\partial y_{1}}
\end{aligned}
$$

(b) Cont'd::

$$
\begin{aligned}
\Rightarrow & \left(\frac{\partial f}{\partial y^{\prime}}=\frac{\partial f}{\partial y}\right. \\
\frac{\partial f}{\partial z^{\prime}}= & \frac{\partial f}{\partial t} \frac{\partial f^{\prime}}{\partial z^{\prime}}+\frac{\partial f}{\partial x} \frac{\partial x^{\prime} A^{\circ}}{\partial z^{\prime}}+\frac{\partial f}{\partial y} \frac{\partial y^{\prime}}{\partial z^{\prime}}+\frac{\partial f}{\partial z^{\prime}} \cdot \frac{\partial z}{\partial z^{\prime}} \\
& \frac{\partial f}{\partial z^{\prime}}=\frac{\partial f}{\partial z}
\end{aligned}
$$

(c) We need to convert F_{α} to F^{α} in order to apply one strudaud Lorentz trusformodion

$$
\text { i.e } F^{\prime \alpha}=L^{\alpha}{ }_{\sigma} F^{\sigma}
$$

And $F^{\alpha}=g \alpha \sigma F_{\sigma} \quad g \alpha \sigma=$ metric tancan

$$
\left[F^{*}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
\frac{1}{c} \frac{\partial f}{\partial t} \\
\partial t / \partial x \\
\partial t / \partial y \\
\partial t / \partial z
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{c} \frac{\partial f}{\partial t} \\
-\frac{\partial f}{\partial x} \\
-\frac{\partial f}{\partial y} \\
-\frac{\partial f}{\partial z}
\end{array}\right]\right.
$$

(d)

$$
\begin{aligned}
F^{\prime \alpha} & =\left[\begin{array}{c}
\frac{1}{c} \frac{\partial f}{\partial t^{\prime}} \\
-\frac{\partial f}{\partial x^{\prime}} \\
-\frac{\partial f}{\partial y^{\prime}} \\
-\frac{\partial f}{\partial t^{\prime}}
\end{array}\right]=\left[\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
6 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\frac{1}{c} \frac{\partial f}{\partial t} \\
-\frac{\partial f}{\partial x} \\
-\frac{\partial f}{\partial y} \\
-\frac{\partial f}{\partial z}
\end{array}\right] \\
& =\left[\begin{array}{c}
\gamma\left(\frac{1}{c} \frac{\partial f}{\partial t}+\beta \frac{\partial f}{\partial x}\right) \\
-\gamma\left(\beta \frac{1}{c} \frac{\partial f}{\partial t}+\frac{\partial f}{\partial x}\right) \\
-\frac{\partial f}{\partial y} \\
-\frac{\partial f}{\partial z}
\end{array}\right]
\end{aligned}
$$

(d) We thee have

$$
\begin{aligned}
& \frac{1}{c} \frac{\partial f}{\partial t^{\prime}}=\gamma\left(\frac{1}{c} \frac{\partial f}{\partial t}+\beta \frac{\partial f}{\partial x}\right) \\
& \frac{\partial f}{\partial x^{\prime}}=\gamma\left(\beta \frac{1}{c} \frac{\partial f}{\partial t}+\frac{\partial f}{\partial x}\right) \\
& \frac{\partial f}{\partial y^{\prime}}=\frac{\partial f}{\partial y} \\
& \frac{\partial f}{\partial z^{\prime}}=\frac{\partial f}{\partial z}
\end{aligned}
$$

These results assumed $\partial_{\mu} f$ is a covariant 4-vecfor and gave. the same result as
chair rule
$\Rightarrow \int g_{M} f$ is a covariant 4-vector assuming f is an invariant function!

WRITE ONLY ON THE FRONT SIDE OF PAGE DO NOT WRITE YOUR NAME OR UNID

PHYS 7110 Fall 2022

Problem 2 [20 pts]

A square loop carries a current I_{2} that circulates in the counter-clockwise sense as seen from above as shown. The loop is centered on the origin and sits in the $x y$-plane. It has sides of length $2 b$.

An infinite wire lies parallel to the z-axis. It is offset in the negative y direction from the origin by a distance R (i.e. it sits at $x=0, y=-R, R \gg b$).

This wire carries a current I_{1} in the +z direction. Treating the loop as a point magnetic dipole, find the force and torque exerted by the wire on the loop, following the steps below.

We break up the loop into four segments, C_{1}, C_{2}, C_{3}, and C_{4}.
(a) $[3 \mathrm{pts}]$ Write down the line element $d \vec{l}_{1}$ and its location \vec{r}_{1} on segment C_{1}, in Cartesian coordinates, x, y, z, their differentials $d x, d y, d z$, and in Cartesian components - i.e. as a linear combination of $\hat{x}, \hat{y}, \hat{z}$.
(b) [3 pts] Integrate the appropriate combination of $d \vec{l}_{1}$ and \vec{r}_{1} over C_{1} to find \vec{m}_{1}, the contribution of C_{1} to the total magnetic (dipole) moment \vec{m}.
(c) $[2 \mathrm{pts}]$ Use the symmetry of the system to find \vec{m} from \vec{m}_{1}.
(d) $[4 \mathrm{pts}]$ Write down the magnetic field $\vec{B}(\vec{r})$ generated by current I_{1} in Cartesian coordinates, x, y, z, and in Cartesian components - i.e. as a linear combination of $\hat{x}, \hat{y}, \hat{z}$. Remember the infinite wire lies parallel to the z-axis and is located at $x=0, y=-R$, where $R \gg b$.
(e) $[4 \mathrm{pts}]$ From the results of (c) and (d) find the torque \vec{N} exerted by the magnetic field generated by the infinite wire on the current loop, in the dipole approximation, in Cartesian components - i.e. as a linear combination of $\hat{x}, \hat{y}, \hat{z}$.
(f) [4 pts] From the results of (c) and (d) find the force \vec{F} exerted by the magnetic field generated by the infinite wire on the current loop, in the dipole approximation, in Cartesian components - i.e. as a linear combination of $\hat{x}, \hat{y}, \hat{z}$.

$$
\begin{gathered}
\text { (a) } \\
y=-b, x=\frac{1}{b}, y=-b \\
1 \times \quad 1
\end{gathered}
$$

$$
\vec{F}_{1}=\frac{b \hat{x}+y \hat{y}}{\uparrow}+\phi \hat{\theta} \hat{z}
$$

$$
-b<y<b
$$

$$
d \overrightarrow{l_{1}}=d y \hat{y}
$$

(b)

$$
\begin{aligned}
\vec{m}_{1}= & \frac{1}{2} \int_{C_{1}} \vec{r}_{1} \times d q_{1} \vec{v}_{1}=\frac{1}{2} \int_{C_{1}} \vec{r}_{1} \times I_{1} d \vec{l}_{1} \\
& \vec{r}_{1}=b \hat{x}+y \hat{y} \quad d \vec{l}_{1}=d y \hat{y} \quad \hat{x} \times \hat{y}=\hat{z}, \\
& \frac{1}{2} \vec{F}_{1} \times I_{1} d \overrightarrow{l_{1}}=\frac{I^{2}}{2}(b \hat{x}+y \hat{y}) \times d y \hat{y}=\frac{I_{1} b}{2} d y \hat{z} \\
\vec{m}_{1}= & \int_{-b}^{b} \frac{I_{1} b}{2} d y \hat{z}=\frac{I_{1}}{2} \hat{z} \cdot \int_{-b}^{b} d y=\frac{I_{1} b}{2} \hat{z} \cdot 2 b=b^{2} I_{1} \hat{z}
\end{aligned}
$$

(C) By symmetry, all 4 segments should contribute
the some ie: $\vec{\pi}_{2}=\overrightarrow{o n_{3}}=\vec{m}_{4}=\overline{m_{1}}$

$$
\Rightarrow \vec{n} \neq 4 \pi_{1}=4 b^{2} I_{1} \hat{z}
$$

* Note we could have guessed $\vec{M}=I_{1} \vec{a}$ where $\vec{a}=(2 b)^{2} \hat{z} \vec{b}^{\text {the }}$ the vector of C

$$
\begin{aligned}
& \text { (d) cont'd: } x^{\prime}=x y^{\prime}=y+k \quad\left\{\begin{array}{l}
\text { double } \quad y^{\prime} \quad \text { check: } 0^{\prime} \text { is at } y^{\prime}=0 \\
\Rightarrow \vec{B}(z)=M_{0} I_{2} \frac{x \hat{x}+(y+R) \hat{y}^{\prime}}{\left[x^{2}+(y+R)^{2}\right]}
\end{array}\right.
\end{aligned}
$$

(e) in the point dipper approximation: the torque on is is

$$
\vec{N}=\vec{m} \times \vec{B}(0)
$$

locator of diode
ie we tons to fond \vec{B} at O

$$
\begin{aligned}
& \vec{B}(0)=\mu_{0} I_{2} \frac{\cos \hat{x}+(R) \hat{y}}{\left[(a)^{2}+(0+R)^{2}\right]}=\frac{\mu_{0} I_{2} \hat{y}}{R} \hat{R} \hat{k}=\frac{4 b^{2} I_{1} \hat{z}}{n} \times \frac{\mu_{0} I_{2} \hat{y}}{R}=\frac{4 \mu_{0} b^{2} I_{1} I_{2}}{R} \hat{x} \\
& (\vec{N})
\end{aligned}
$$

(f) One could use one of two equivalent expression for the force F

$$
\vec{F}=[\vec{B}(\vec{m} \cdot \vec{B})]_{\vec{F}=0}
$$

\vec{m} is a conslat vector

Vector
identity: $\vec{\nabla}(\vec{m} \cdot \vec{B})=\vec{m} \times(\vec{\nabla} \times \vec{B})+\vec{B} \times(\vec{\nabla} \times \vec{M})+(\vec{m} \cdot \vec{\nabla}) \vec{B}+(\overrightarrow{\vec{B}} \cdot \vec{\nabla})^{\dot{m}}$ $(\nabla \times \vec{F})]_{0}=0=\mu_{0} \vec{r}(0)$ here:
it is an external field.:

$$
\left.\nabla(\vec{m} \cdot \vec{B})\right|_{0}=\left.(\vec{m} \cdot \vec{\nabla}) \vec{B}\right|_{0}
$$

First:

$$
\begin{aligned}
& \vec{m} \cdot \vec{B}= 4 b^{2} I_{1} \hat{z} \cdot \mu_{0} I_{2} \frac{x \hat{x}+(y+r) \hat{y}}{\left[x^{2}+(y+R)^{2}\right]} \\
& \hat{z} \cdot \hat{x}=0 \quad \hat{z} \cdot \hat{y}=0 \\
& \Rightarrow \vec{m} \cdot \vec{B}=0 \\
& \vec{F}=\left.\vec{\nabla}(\vec{m} \cdot \vec{B})\right|_{0}=0
\end{aligned}
$$

OR: and form

Note $\frac{\partial}{\partial z} \widetilde{B}=0$ everyuberp

$$
\Rightarrow \vec{F}=\left.(\vec{m} \cdot \vec{\nabla}) \vec{\beta}\right|_{0}=0
$$

Same result!

WRITE ONLY ON THE FRONT SIDE OF PAGE DO NOT WRITE YOUR NAME OR UNID

PHYS 7110 Fall 2022
Final/Comprehensive Exam
Dec. 11, 2023

Problem 3 [20 pts]

A solid conducting sphere has radius a, and is centered on the origin. It is divided into four quadrants about the x -axis as shown, such that each piece is held at an alternating potential of $\varphi= \pm V_{0}$:

$$
\varphi(a, \theta, \phi)=\left\{\begin{array}{lccc}
+V_{0} & \text { region } A & z>0 & y>0 \\
-V_{0} & \text { region } B & z>0 & y<0 \\
-V_{0} & \text { region } C & z<0 & y>0 \\
+V_{0} & \text { region } D & z<0 & y<0
\end{array}\right.
$$

The sphere sits in a space that is empty for $r>a$. We will be investigating the electrostatic potential $\varphi(r, \theta, \phi)$ in this (outside) region in spherical coordinates.

(a) [4 pts] Find the limits in θ and ϕ for the four regions A, B, C, and D, in the form, for example, a hypothetical region F :
region F: $\pi / 4<\theta<3 \pi / 4$, and $-\pi / 3<\phi<-\pi / 6$
(b) [2 pts.] Write down the most general solution $\varphi(r, \theta, \phi)$ to the Laplace Equation, when solved by separation of variables in spherical coordinates r, θ, ϕ, with spherical boundary conditions. This should be an infinite series summing over two indices, l and m. As we have done in class, use the coefficients A_{l} for the non-negative (zero or positive) powers of r, and B_{l} for the negative powers of r.
(c) [4 pts] Apply the implicit boundary condition that the potential $\varphi \rightarrow 0$ as $r \rightarrow \infty$. This should eliminate half of the coefficients (i.e. they are all zero for all values of l and m.). Indicate which coefficients vanish from this boundary condition and write the new, now restricted general solution for $r>a$.
(d) [10 pts] Now apply the stated boundary condition at $r=a$. Solve for the coefficients for $l=2$ and all allowed values of m.

Spherical Harmonics:

$$
\begin{aligned}
& l=0 \quad Y_{00}=\frac{1}{\sqrt{4 \pi}} \\
& l=1\left\{\begin{array}{l}
Y_{11}=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi} \\
Y_{10}=\sqrt{\frac{3}{4 \pi}} \cos \theta
\end{array}\right. \\
& l=2\left\{\begin{array}{l}
Y_{22}=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{2 i \phi} \\
Y_{21}=-\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{i \phi} \\
Y_{20}=\sqrt{\frac{5}{4 \pi}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right)
\end{array}\right.
\end{aligned}
$$

Remember for negative m, use

$$
Y_{l,-m}(\theta, \phi)=(-1)^{m} Y_{l m}^{*}(\theta, \phi)
$$

(a) for $z>0$:
ie regions A, B
we have $<\theta<\pi / 2$
and $\pi / 2<\theta<\pi$ for $C D Z<0$
regions $A, C: y>0 \Rightarrow 0<\phi<\pi$
$B D \quad y<0-\pi<\varnothing<0$
Region A :
$0<\theta<\frac{\pi}{2} \quad 0<\phi<\pi \quad \varphi=+V_{0}$
B
0 $<\theta<\pi / 2$
$-\pi<\phi<\sigma$
$\varphi=-V_{0}$
$\frac{\pi}{2}<\theta<\pi \quad 0<\phi<\pi \quad \varphi=-V_{0}$
$\frac{\pi}{2}<\theta<\pi-\pi<\phi<0 \quad \varphi=+V_{0}$
(b) $\varphi(r, \theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{ \pm l}\left[A_{l m} r^{l}+\frac{B_{l m}}{r^{l+1}}\right] Y_{l m}(\theta, \phi)$
is the most general solution in
spherical coordinates on spherical boundary conditions.

so $A_{l m} r^{l} \rightarrow \infty$ for $l>1$ as $r \rightarrow \infty$
$\Rightarrow A_{l m}=0$ for $l>l$ in arden $\phi \rightarrow 0$
Also: $A_{D O} r^{0}=A_{D D} \rightarrow A_{D A}$ as $r \rightarrow \infty$
\rightarrow we ale requite $A_{00}=0$

$$
\Rightarrow \Phi(r, \theta, \phi)=\sum_{l=\infty}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{l m}}{r^{1+1}} Y_{l m}(\theta, \phi) \quad \begin{aligned}
& \text { after } \\
& \varphi \frac{1}{\text { requiring }} \\
& r+\infty)
\end{aligned}
$$

(d) We take advantage of the orthogonabity/normality condition of $Y_{l m}(\theta, \phi)$

$$
\text { i.e: } \int_{l} d \Omega Y_{l m}^{*}(\theta, \phi) Y_{\ell^{\prime} m}^{\prime}(\theta, \phi)=\delta_{l \ell^{\prime}} \delta_{m m} \text {, }
$$

So takry (using $l^{\prime} m^{\prime}$), If at $r=a$

$$
\begin{aligned}
& \phi(a, \theta, \phi)=\sum_{\ell^{\prime}=0}^{\infty} \sum_{n^{\prime}=-\ell^{\prime}}^{+l^{\prime}} \frac{B_{l_{m}^{\prime \prime}}}{a^{l^{\prime}+1}} Y_{\ell^{\prime} m^{\prime}}(\theta, \phi) \text {. } \\
& \underbrace{\int d \Omega Y_{l m}^{*}(\theta, \phi) \Phi(a, \theta, \phi)}=\sum_{l^{\prime}=D}^{\infty} \sum_{m=-l^{\prime}}^{+l^{\prime}} \frac{B_{l_{m}^{\prime}}^{\prime}}{a^{l^{\prime}+1}} \int d \Omega Y_{l m}^{*}(\theta, \phi) Y_{l^{\prime}}(\theta, \phi)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow B_{l m}=a^{l+1} \int d \Omega Y_{l m}^{*}(\partial, \phi) \mathscr{F}(a ; \theta, \phi)
\end{aligned}
$$

We are interested only in $l=2$ We know, however, that $Y_{l,-m}(0, \phi)=(-1)^{m} Y_{l_{m}}^{*}(\theta, \phi)$

$$
\begin{align*}
& \Rightarrow B_{l-m}=(-1)^{n} B_{l m} \\
& l=z, m=0 \quad Y_{20}^{k}(\theta, \phi)=\left[\sqrt{\frac{5}{4 \pi}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right)\right]^{*} \\
& =\sqrt{\frac{5}{4 \pi}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right) \\
& B_{20}=\frac{1}{4 N} \sqrt{\frac{5}{\pi}} a^{3} V_{0}\left\{\int_{0}^{+\pi /} d \phi \int_{0}^{\pi} d \theta \sin \theta\left(3 \cos ^{2} \theta-\frac{1}{2}\right)\right. \\
& \int_{-\pi}^{0} d \phi \int_{0}^{\pi / 2} d \theta \sin \theta\left(3 \cos ^{2} \theta-\frac{1}{2}\right) \\
& -\int_{0}^{+\pi} d \phi \int_{\pi / 2}^{\pi} \pi \theta \sin \theta\left(3 \cos ^{2} \theta-\frac{1}{2}\right) \\
& \left.-\int_{-\pi}^{01} d \phi \int_{\pi / 2}^{\pi} d \theta \sin \theta\left(3 \cos ^{2} \theta-\frac{1}{2}\right)\right\}
\end{align*}
$$

$$
\Rightarrow B_{22}=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} a^{3} V_{0}\left\{\begin{array}{l}
4 \pi \\
0
\end{array} e^{-2 i \phi} d \phi \int_{0}^{\frac{\pi}{2}} \sin ^{3} \theta d \theta\right.
$$

$$
-\int_{-\pi}^{0} e^{-2 i \phi} d \phi \int_{0}^{\frac{\pi}{2}} \sin ^{3} \theta d \theta
$$

$$
-\int_{0}^{+\pi} e^{-2 i \phi} d \phi \int_{\pi / 2}^{\pi} \sin ^{3} \theta d \theta
$$

$$
+\int_{-\pi}^{0} e^{-2 i \phi} d \phi \int_{\pi / 2}^{\pi} \sin \dot{\theta} d \theta
$$

Note $\int_{0}^{\pi} e^{-2 i \phi}=\int_{-\pi}^{0} e^{-2 i \phi}=0$
because both are integrals over full period for $e^{-z i \phi}$

$$
\Rightarrow \beta_{22}=0 \quad B_{2-2}=(-1)^{2} \beta_{22}^{*}=0
$$

