This exam is being graded with student identity anonymized. Please put your name and Unid <u>on this page ONLY</u>!!!

Name _____

Unid _____

This exam has a strict time limit of two (2) hours. It will start at 1:00pm and finish at 3:00pm. There are three (3) problems.

Instructor's suggestions:

- Read every problem before you attempt to solve it.
- Do not spend more than 40 minutes on a problem until you have finished all the other problems.
- If you get stuck, move on to the next problem and come back to this one later.
- Integral Tables, Vector derivatives, Math Identities, Spherical Harmonics, Legendre polynomials and other special functions can be found in the "math" folder in CANVAS for this class.
- You can always use a symbolic math package, such as Maple, to evaluate integrals and do matrix multiplication.

WRITE ONLY ON THE FRONT SIDE OF PAGE DO NOT WRITE YOUR NAME OR UNID

PHYS 7110 Fall 2022

Final/Comprehensive Exam

Problem 1 [20 pts]

In this problem, we will show that the 4-gradient of an invariant function f(x, y, z, t),

$$F_{\alpha} = \partial_{\alpha} f = \frac{\partial f}{\partial X^{\alpha}} = \begin{bmatrix} \frac{1}{c} \frac{\partial f}{\partial t} \\ \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix}$$

is a covariant 4-vector. Follow the steps below. We take the usual situation where the moving frame S' moves in the +x direction relative to the lab frame S at velocity $v = \beta c$. The axes of the two systems are parallel as shown, and the origins O and O' coincide at t = t' = 0.

(a) [4 pts] We can treat the S frame space time coordinates t, x, y, z as functions of those in the S' frame – i.e. t = t(t', x', y', z'), x = x(t', x', y', z'), y = y(t', x', y', z'), z = z(t', x', y', z'). Write down these four functions, you may include c, β , and $\gamma = 1/\sqrt{1-\beta^2}$. (These constitute the inverse Lorentz transformation).

(b) [6 pts] Now find all 4 components of $F'_{\alpha} = \partial_{\alpha}' f = \partial f / \partial X'^{\alpha}$ — i.e. $\partial f / \partial t'$, $\partial f / \partial x'$, $\partial f / \partial y'$, and $\partial f / \partial z'$ by chain rule -- for example

$$\frac{\partial f}{\partial z'} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial z'} + \frac{\partial f}{\partial x} \frac{\partial x}{\partial z'} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial z'} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial z'}$$

You must compute each $\partial X^{\mu}/\partial X'^{\nu}$ explicitly. Your answers should contain $\partial f/\partial t$, $\partial f/\partial x$, $\partial f/\partial y$, and $\partial f/\partial z$.

Assuming F_{α} is a covariant 4-vector, we can also just apply Lorentz transformation $F'^{\mu} = L^{\mu}{}_{\nu}F^{\nu}$ (Einstein summation implied over repeated Greek indices). However, this is the transformation equation for a contravariant 4-vector

(c) [4 pts] You must first convert F_{α} from its covariant form to its contravariant form F^{α} . This operation involves something like a multiplication of a 4x4 matrix (2nd order tensor) on the left of a column 4-vector. Write out your answer in the form

$$F^{\alpha} = \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix}$$

(d) [6 pts] Now apply the forward (from S to S' coordinates) Lorentz transformation to obtain F'^{α} . From these result, and NOT those from parts (a) and (b), find $\partial f/\partial t'$, $\partial f/\partial x'$, $\partial f/\partial y'$, and $\partial f/\partial z'$. Again your answers should contain $\partial f/\partial t$, $\partial f/\partial x$, $\partial f/\partial y$, and $\partial f/\partial z$. Are these the same as what you got for part (b)?

(a) The Threat Covertz - transformation Ts given by 22' $\chi_{\alpha} = (\Gamma_{-1})_{\alpha} \chi_{12}$ $\begin{bmatrix} ct \\ x \\ - \\ y \\ - \\ z \end{bmatrix} = \begin{bmatrix} x & p8 & 0 & 0 \\ p8 & 8 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} ct' \\ x' \\ y' \\ z' \end{bmatrix}$ $ct = \delta(ct' + px') \Rightarrow t = t(t', x', y', t') = \delta(t' + t', x')$ OR: $X = \mathcal{V}(\mathcal{P}(\mathcal{E}' + \mathbf{x}')) | \mathbf{x} = \mathbf{x}(\mathcal{E}', \mathbf{x}', \mathbf{y}', \mathbf{z}') = \mathcal{U}(\mathcal{P}(\mathcal{E}' + \mathbf{x}'))$ $Y = \gamma$ Y = Y(t', x', y', z) = y'Z= Z' Z=Z(E', V', Y', Z') = Z' (b) by defin: $F'_{\alpha} = \frac{\partial f'}{\partial X'^{\prime}} = \frac{\partial f}{\partial X'^{\prime}} = \begin{cases} \frac{\partial f}{\partial F} \\ \frac{\partial f}{\partial X'} \\ \frac{\partial f}{\partial Y'} \\ \frac{\partial f}{\partial Y'} \\ \frac{\partial f}{\partial Y'} \end{cases}$ 2£ 27/ $\frac{\partial f}{\partial t} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial t} + \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial z} \frac{\partial f}{\partial t}$ = V AF + YRC AF $\frac{c_{3f}}{c_{2f}} = \lambda \left(\frac{c_{3f}}{c_{3f}} + \frac{c_{3f}}{c_{3f}} \right)$ $\frac{\partial x}{\partial t} = \frac{\partial t}{\partial t} \frac{\partial x}{\partial t} + \frac{\partial x}{\partial t} \frac{\partial x}{\partial x} + \frac{\partial y}{\partial t} \frac{\partial x}{\partial x} + \frac{\partial y}{\partial t} \frac{\partial z}{\partial x}$ $\frac{\partial f}{\partial \chi'} = \chi(p, t) + \frac{\partial f}{\partial \chi}$ $\frac{\partial f}{\partial Y'} = \frac{\partial f}{\partial t} \frac{\partial f}{\partial y'} + \frac{\partial f}{\partial x} \frac{\partial f}{\partial y'} + \frac{\partial f}{\partial y} \frac{\partial f}{\partial y'} + \frac{\partial f}{\partial t} \frac{\partial f}{\partial t} + \frac{\partial f}{\partial t} + \frac{\partial f}{\partial t} + \frac{\partial f}{\partial t} \frac{\partial f}{\partial t} + \frac{\partial f}{\partial t} \frac{\partial f}{\partial t} + \frac{\partial f}{\partial$

2 (b) contidi $\Rightarrow \left(\frac{\partial f}{\partial y} \right) = \frac{\partial f}{\partial y}$ $\frac{\partial f}{\partial z'} = \frac{\partial f}{\partial t} \frac{\partial f'}{\partial z'} + \frac{\partial f}{\partial x} \frac{\partial \chi}{\partial z'} + \frac{\partial f}{\partial y} \frac{\partial \chi}{\partial z'} + \frac{\partial f}{\partial z'} \frac{\partial \chi}{\partial z'}$ $\frac{\partial f}{\partial z} = \frac{\partial f}{\partial z}$ (c) We need to convert Fx to FX Th order to apply our standard Lorentz trusformation i.e FIX = LX FF And FX = gxr For gxr = metric tenner $\begin{array}{c} (d) \\ F'x = \begin{bmatrix} -\frac{1}{2} \frac{2f}{2} \\ -\frac{3f}{2} \\$ $= \begin{bmatrix} -x(f_{1}) + f_{2} + f_{2$ Cont'1

(d) We thus have $\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) +$ $\frac{\partial f}{\partial x} = \mathcal{Y}\left(\mathcal{P}\left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial x}\right)\right) - \mathcal{S}ame as in$ $\frac{\partial f}{\partial t} = \frac{\partial f}{\partial t}$ Sane as (b) $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x}$ These results assumed Juf is a Covavrant 4- vector and gave the same result as chair rule ⇒ Onf is a covariant 4-vector assumily of is an muariant function (

WRITE ONLY ON THE FRONT SIDE OF PAGE DO NOT WRITE YOUR NAME OR UNID

PHYS 7110 Fall 2022

Final/Comprehensive Exam

Dec. 11, 2023

Problem 2 [20 pts]

A square loop carries a current I_2 that circulates in the counter-clockwise sense as seen from above as shown. The loop is centered on the origin and sits in the *xy*-plane. It has sides of length 2*b*.

An infinite wire lies parallel to the *z*-axis. It is offset in the negative y direction from the origin by a distance *R* (i.e. it sits at x = 0, y = -R, $R \gg b$).

This wire carries a current I_1 in the +z direction. Treating the loop as a point magnetic dipole, find the force and torque exerted by the wire on the loop, following the steps below.

We break up the loop into four segments, C_1 , C_2 , C_3 , and C_4 .

(a) [3 pts] Write down the line element $d\vec{l}_1$ and its location \vec{r}_1 on segment C_1 , in Cartesian coordinates, x, y, z, their differentials dx, dy, dz, and in Cartesian components – i.e. as a linear combination of \hat{x} , \hat{y} , \hat{z} .

(b) [3 pts] Integrate the appropriate combination of $d\vec{l}_1$ and \vec{r}_1 over C_1 to find \vec{m}_1 , the contribution of C_1 to the total magnetic (dipole) moment \vec{m} .

(c) [2 pts] Use the symmetry of the system to find \vec{m} from \vec{m}_1 .

(d) [4 pts] Write down the magnetic field $\vec{B}(\vec{r})$ generated by current I_1 in Cartesian coordinates, x, y, z, and in Cartesian components – i.e. as a linear combination of $\hat{x}, \hat{y}, \hat{z}$. Remember the infinite wire lies parallel to the *z*-axis and is located at x = 0, y = -R, where $R \gg b$.

(e) [4 pts] From the results of (c) and (d) find the torque \vec{N} exerted by the magnetic field generated by the infinite wire on the current loop, in the dipole approximation, in Cartesian components – i.e. as a linear combination of \hat{x} , \hat{y} , \hat{z} .

(f) [4 pts] From the results of (c) and (d) find the force \vec{F} exerted by the magnetic field generated by the infinite wire on the current loop, in the dipole approximation, in Cartesian components – i.e. as a linear combination of \hat{x} , \hat{y} , \hat{z} .

(q) $\begin{bmatrix} \vec{F}_1 = 6\hat{x} + y\hat{y} + \theta\hat{z} \end{bmatrix}$ _ Y y=-6 / x=-15 -b<y<b in xy plane $dl_1 = dy\hat{y}$ (b) $\vec{m}_1 = \frac{1}{2} \int_{C} \vec{F}_1 \times d\vec{g}_1 \vec{V}_1 = \frac{1}{2} \int_{C} \vec{F}_1 \times I_1 d\vec{l}_1$ $\vec{r} = b\hat{\chi} + y\hat{\gamma} d\vec{e}_i = dy\hat{\gamma}$ $\chi \times \chi = Z$, $\chi \times \chi = 0$ + Fix I dli = F(bx+y) xdyy = Fb dyz $M_{1} = \int_{-h}^{h} \frac{J_{1}b}{2} dy \hat{z} = \frac{J_{1}b}{2} \hat{z} \cdot \int_{-h}^{h} \frac{dy}{2} = \frac{J_{1}b}{2} \hat{z} \cdot zb = b^{2} I_{1} \hat{z}$ (C) By symmetry, all 4 segments should contribute the some i.e. $\overline{m_2} = \overline{m_3} = \overline{m_4} = \overline{m_1}$ $\Rightarrow (\widetilde{m} \neq 4\widetilde{m}, = 4b^2 I_1 \neq 1$ \$ NOTE we could have guessed $M = I_1 a^2$ where $\vec{a} = (zb)^2 \hat{z}$ is the area vector of C Let's define a cylindrical (d)\$Z coordinate system Li, cartered @ 0 = - Ry $\Rightarrow \chi' = SCOS \not = \chi'$ ~ 2 Note $\vec{B} = \underbrace{M_0 I_2}_{2\pi S} \hat{S} = \underbrace{M_0 I_2}_{2\pi} \underbrace{Scorp \hat{x} + SSmp \hat{y}}_{S^2} = \underbrace{M_0 J_2 \times \hat{x} + \hat{y} \hat{y}}_{fx'^2 + \hat{y}'^2}$ Known verilt from class

double check: O is at y'= 0 (d) cont'd: x'=x y'=y+R > Y=Y'-R=-RV $\overline{B}(\overline{F}) = M_0 I_2 \chi \chi + (\chi + R) \chi$ $\left[\chi^{2}+(\gamma+R)^{2}\right]$ (e) In the point dipole approximation; the targue on our is N = m× B(0) Locuster of drpdg il we count to foul Bat O $\overline{B}(0) = M \cdot I_{\Sigma} \underbrace{(0)}_{\Sigma} \underbrace{+(R)}_{Y} = M \cdot I_{Z} \widehat{Y}$ $\left[\underbrace{(0)}_{Y} \underbrace{+(0+R)}_{Z} \right] = \frac{M \cdot I_{Z} \widehat{Y}}{R} \quad \widehat{z} \times \widehat{Y} - \widehat{z}$ $\overline{N} = \frac{4b^2 I_1 \hat{z} \times \mu_0 J_2 \hat{y}}{\overline{m}} = \frac{4\mu_0 b^2 I_1 I_2}{R} \hat{x}$ (f) One could use one of two equivalent expression for the force F $\vec{F} = \left(\vec{m}, \vec{B}\right)_{\vec{F}=0}$ m is a constant $Vactor-identity: \overline{\nabla}(\overline{m}\cdot\overline{F}) = \overline{m}\times(\overline{\chi}\overline{E}) + \overline{F}\times(\overline{g}\overline{\chi}\overline{U}) + (\overline{m}\cdot\overline{V})\overline{F} + (\overline{F}\cdot\overline{g})\overline{u}$ $(\forall xF)$] = l = MoF(0) here: it is an external field." $\overline{\nabla}(\overline{M}\cdot\overline{B})|_{0} = (\overline{M}\cdot\overline{B})\overline{B}|_{0}$

First: $\overline{\mathcal{M}} \cdot \overline{\mathcal{B}} = 4b^2 J_1 \overline{\mathcal{E}} \cdot \mathcal{M}_0 J_2 \frac{\pi \widehat{\mathcal{K}} + (y_+ R) \widehat{\mathcal{Y}}}{[\chi^2 + (y_+ R)^2]}$ $\widehat{\mathcal{Z}} \cdot \widehat{\mathcal{X}} = 0 \qquad \widehat{\mathcal{Z}} \cdot \widehat{\mathcal{Y}} = 0$ > R.F=0 $\vec{F} = \vec{\nabla}(\vec{m} \cdot \vec{F}) = \vec{\nabla}(\vec{m} \cdot \vec{F})$ ORi 2nd form $\vec{F} = (\vec{M}_{X} \vec{J}_{X}) (\vec{M}_{Y} \vec{J}_{Y}) + (\vec{M}_{Z} \vec{J}_{Z}) (\vec{M}_{U} \vec{J}) (\vec{M}_{$ 5 Note 2 F = 0 everywhere $= \overline{F} (\overline{m}, \overline{z}) \overline{F} = \overline{O}$ Same vesult!

WRITE ONLY ON THE FRONT SIDE OF PAGE DO NOT WRITE YOUR NAME OR UNID

PHYS 7110 Fall 2022

Final/Comprehensive Exam

Dec. 11, 2023

Problem 3 [20 pts]

A solid conducting sphere has radius a, and is centered on the origin. It is divided into four quadrants about the x-axis as shown, such that each piece is held at an alternating potential of $\varphi = \pm V_0$:

$$\varphi(a, \theta, \phi) = \begin{cases} +V_0 & \text{region } A & z > 0 & y > 0 \\ -V_0 & \text{region } B & z > 0 & y < 0 \\ -V_0 & \text{region } C & z < 0 & y > 0 \\ +V_0 & \text{region } D & z < 0 & y < 0 \end{cases}$$

The sphere sits in a space that is empty for r > a. We will be investigating the electrostatic potential $\varphi(r, \theta, \phi)$ in this (outside) region in spherical coordinates.

(a) [4 pts] Find the limits in θ and ϕ for the four regions A, B, C, and D, in the form, for example, a hypothetical region F:

region F:
$$\pi/_4 < \theta < \frac{3\pi}_4$$
, and $-\pi/_3 < \phi < -\pi/_6$

(b) [2 pts.] Write down the most general solution $\varphi(r, \theta, \phi)$ to the Laplace Equation, when solved by separation of variables in spherical coordinates r, θ, ϕ , with spherical boundary conditions. This should be an infinite series summing over two indices, l and m. As we have done in class, use the coefficients A_l for the non-negative (zero or positive) powers of r, and B_l for the negative powers of r.

(c) [4 pts] Apply the implicit boundary condition that the potential $\varphi \to 0$ as $r \to \infty$. This should eliminate half of the coefficients (i.e. they are all zero for all values of *l* and *m*.). Indicate which coefficients vanish from this boundary condition and write the new, now restricted general solution for r > a.

(d) [10 pts] Now apply the stated boundary condition at r = a. Solve for the coefficients for l = 2 and all allowed values of m.

Spherical Harmonics:

$$l = 0 Y_{00} = \frac{1}{\sqrt{4\pi}}$$

$$l = 1 \begin{cases} Y_{11} = -\sqrt{\frac{3}{8\pi}} \sin \theta e^{i\phi} \\ Y_{10} = \sqrt{\frac{3}{4\pi}} \cos \theta \end{cases}$$

$$l = 2 \begin{cases} Y_{22} = \frac{1}{4} \sqrt{\frac{15}{2\pi}} \sin^2 \theta e^{2i\phi} \\ Y_{21} = -\sqrt{\frac{15}{8\pi}} \sin \theta \cos \theta e^{i\phi} \\ Y_{20} = \sqrt{\frac{5}{4\pi}} (\frac{3}{2} \cos^2 \theta - \frac{1}{2}) \end{cases}$$

Remember for negative *m*, use

$$Y_{l,-m}(\theta, \phi) = (-1)^m Y^*_{lm}(\theta, \phi)$$

(a) for Z>0 : i.e regions A,B We have a CO<T/2 У and B<EXT for CDZO ϕ for regions A, C: Y>O = O< Ø< T BD X<0 - T<Ø<0 Region A 0 < 0 < \$ 0 < \$ 0 < \$ = + Vo ř 0 < 9 < 項 - ポ < ダ < 6 4 = - Vo B 7 愛くロイル ロイダイボ タ=-V。 D エノロイボ -π<タくの P=+V。 $(b)\left(\varphi(r,\sigma,\phi)=\sum_{l=0}^{\infty}\sum_{m=-l}^{th}\left[A_{lm}r^{l}+\frac{B_{lm}}{r^{l+1}}\right]Y_{lm}\left(\theta,\phi\right)$ is the most gateral solution Th spherical coordinates on spherical boundary conditions. $(c) \not \rightarrow \xrightarrow{\Gamma \neq 00}$ t (Blan) Yem (0, \$ So Almre > 00 for l>1 as r-200 ⇒ Alm = 0 for l>1 The order \$ >0 Also: ADOV° = ADO > ADA as V-> 00 Zwe alse roquite A00=0 $\begin{aligned}
\Psi(v, \Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{after} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{m=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{m=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{m=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\
\varphi_{m}(\Theta, \phi) &= \sum_{m=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \frac{B_{lm}}{r_{l+1}} \chi_{m}(\Theta, \phi) & \text{vequaring} \\ &= \sum_{m=-\infty}^{\infty} \sum_$

(d) We take advantage of the orthogonality/hormality condition of VIm(0,\$) i.e: | d.s. Yem (0,\$) Ye'm (0,\$) = See' Smm' So talony (using l'm') of act r=a $P(a, \theta, \varphi) = \stackrel{\sim}{\underset{l'=0}{\overset{\scriptstyle}{\overset{\scriptstyle}}}} \stackrel{+l'}{\underset{m'=-l'}{\overset{\scriptstyle}{\overset{\scriptstyle}}}} \stackrel{\underline{B}_{lm'}}{\underset{m'=-l'}{\overset{\scriptstyle}{\overset{\scriptstyle}}}} \stackrel{V_{lm'}(0, \varphi)}{\underset{m'=-l'}{\overset{\scriptstyle}{\overset{\scriptstyle}}}}.$ $\int d\Omega Y_{lm}^{*}(\theta, \phi) P(a, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m'=0}^{+l'} \frac{B_{lm'}}{a^{l'+l}} \int d\Omega Y_{lm'}^{*}(\theta, \phi) Y_{ln'}(\theta, \phi)$ $= \sum_{l=0}^{\infty} \frac{\beta_{l}' m'}{m' \epsilon - \ell'} \frac{\beta_{l} m'}{\alpha^{l' + 1}} \frac{\delta_{l} \ell' \delta_{m' m'}}{\delta_{l} \ell' \delta_{m' m'}} = \frac{\beta_{l} m}{\alpha^{l + 1}}$ This ts \ NOT necessary $\Rightarrow 5_{lm} = a^{l+1} \left(ds \left(Y_{lm}(\partial, \phi) \right) \right) \left(q(a; \partial, \phi) \right)$ We are interested only in l=2 we know, however, that $(e_{-m}(e_{p})) = (-1)^m Y_{e_m}^*(e_{p})$ $\Rightarrow B_{l-m} = (-1)^{h_l} B_{lm}$ l=z, m=0 $(20(0, 4) = [\sqrt{4\pi}(\frac{1}{2}\cos^2 0 - \frac{1}{2})]^*$ $B_{20} = \frac{1}{4\sqrt{\pi}} \sqrt{\frac{1}{\pi}} \sqrt{\frac{1}{\sqrt{\pi}}} \sqrt{\frac{1}{\sqrt{\pi$ A $\int_{-\pi}^{\pi} d\theta \int_{0}^{\pi} d\theta Sm \Theta(3\cos\theta - \frac{1}{2})$ B $-\int_{\Theta}^{+} \frac{1}{\pi} d\theta \sin \theta (3\cos^{2} \theta - \frac{1}{2})$ C - J_T dp JT do stud(3006°0-2)} Ľ,

 $\int (3\cos^2 \theta - 1) \sin \theta d\theta = - \int (3u^2 - 1) du = -(u^3 - u)$ $\int_{0}^{T_{k}} (340^{2}\theta - 1) \sin \theta d\theta = -(u^{3} - u)_{1}^{0} = -(0 - \theta - 1 + 1) = 0$ $\begin{bmatrix} \pi (3 \cos^2 \theta - 1) 8 m \oplus d \oplus - [u^3 - u]_0^{-1} = - [-1 + 1 - 0 + 0] = 0$ Ba=AT a [0, 0-0-0] = 0 $B_{20} = 0$ $V_{21}(0,\phi) = \left(-\frac{15}{\sqrt{2\pi}} \sin 0 \cos \theta e^{i\phi}\right)^{k}$ l=2, m=1- JJ SINDCORDE-IN $B_{21} = \frac{1}{2} \sqrt{\frac{15}{2\pi}} a^3 V_0 \left\{ \int_0^{+\pi} e^{-T t} d\phi \int_0^{\pi} S in^2 \rho \cos d\theta \right\}$ - ET ET de Strie cosodo $e^{i\varphi}d\varphi = -e^{i\varphi}$ -/ T e-igdy Jy Sing cosodo = ie-i\$ $\int_{D}^{\pi} e^{i\phi} d\phi = (ie^{-i\phi})_{0}^{\pi}$ + J-K eit df (The Smith Cosodo } $\int 5\pi^2 \Theta \cos \theta d\theta = \int V^2 dV = \frac{1}{3}V^3$ $\int_{-\pi}^{\pi} e^{-i\varphi} = i \left[1 - (-1) \right]$ $\int_{0}^{T_{z}} 5m^{1} \partial \cos \partial d \partial = \frac{1}{3} \left[\sqrt{3} \right]_{0}^{1} \times \frac{1}{3}$ $\int_{\pi}^{\pi} Sin^{2} \Theta \cos \Theta d\Theta = \frac{1}{3} \left[v^{2} \right]_{l}^{0} = \left[-\frac{1}{3} \right]_{l}^{0}$ $B_{21} = \frac{1}{2} \int_{2\pi}^{15} a^{3} V_{0} \int_{2\pi}^{15} (-2i)(\frac{1}{2}) - (+2i)(\frac{1}{2}) + (2i)(\frac{1}{2}) \int_{2\pi}^{15} (-2i)(\frac{1}{2}) \int_{2\pi}^{15} (-2i)(\frac{1}{2})$ $\Delta_{z_1} = \frac{1}{2} \cdot \frac{1}{2\pi} \cdot$ $B_{2-1} = (-1) B_{21}^{*} \implies B_{2-1} = 2i \int_{3i}^{10} q^{2} V_{0} d^{2} (-1) (i)^{*} = 1$

l=2 $Y_{22}^{*}(\theta, \phi) = \left[\frac{1}{4} / \frac{1}{2\pi} \sin^2 \theta e^{2\pi \phi} \right]^{*} = \frac{1}{4} / \frac{1}{2\pi} \sin^2 \theta e^{2\pi \phi}$ $-\int_{-\pi}^{0}e^{-2i\phi}d\phi\int_{0}^{\frac{\pi}{2}}\sin^{2}\theta d\theta$ $-\int_{0}^{+\pi} e^{-2i\phi} d\phi \int_{\pi}^{\pi} \sin^{2}\theta d\theta$ + (e-zip dp) T sin Ddo Note $\int \pi e^{-2i\beta} = \int_{-\pi}^{0} e^{-2i\beta} = 0$ both are integral - over full period for ezis > \$ \$ 22 = 0 \$ = (-1) B = 0