The Department of Physics & Astronomy engages in theoretical and experimental research that spans a broad spectrum of modern physics. Our commitment to excellence and success in research is reflected in the strong international reputations of our faculty and programs. The Department of Physics & Astronomy provides research in these areas:

Below is an overview of these research areas. Use the menu on the left to view detailed information about our various research groups.

Astronomy & Astrophysics

Black holes, the Big Bang, supernovae, gamma ray bursts, pulsars, quasars, active galactic nuclei: the Universe is a beautiful and fascinating place. While astronomy is the most ancient of sciences, it also is largely unknown, and poorly understood. Recent technological advances place us at the cusp of a scientic revolution in our understanding of the Universe. The University of Utah has long been a leader in theoretical astrophysics, gamma-ray astronomy, and cosmic-ray astronomy. In the last couple of decades we have grown this program to include a broad range of interests, including high-energy astrophysics, cosmology, large scale structure, galactic origin and structure, and black holes.
Learn More...



At the University of Utah, scientists engage in cutting edge research in biophysics and related areas. In the Department of Physics & Astronomy, biophysics research is pushing the limits of nanometer-scale optical microscopy techniques, with the goal of studying molecular-scale biological systems; studying the process by which a new enveloped virus is created on the membrane of its host cell; and studying the properties of molecular motors, focusing on how these motors work together, how they are regulated, and how their functioning is disrupted or altered in various diseases.
Learn More...


Cosmic Rays

Surrounding the Earth is a constant shower of subatomic particles called cosmic rays. Many originate from our own Sun, but some come from far more distant and mysterious origins. The Telescope Array Project is designed to study the rarest, most mysterious, and highest energy cosmic rays. Over time scientists hope to unravel the nature of these mysterious visitors, their origins, and to uncover new knowledge about the universe. The University of Utah has a long and distinguished history of leading research into these extremely rare and mysterious visitors from space. International collaborations like the Telescope Array Project are helping to ensure the University of Utah remains a world leader in the new and growing field of astroparticle physics.

Learn More...


Experimental Condensed Matter Physics

Moore’s Law is the observation that computing speed doubles every 18 months; we expect our computers to become smaller, faster and cheaper. In the last few years, Moore’s Law appears to be reaching its physical limit. Electronics cannot get any smaller. Physicists at the University of Utah are conducting fundamental research on materials that could hail the next advance in electronics: organic semiconductors, non-linear optical solids, high-Tc superconductors, spin electronics, quasicrystals, etc. The University of Utah is recognized as a leader in developing techniques for understanding the properties of these materials, including atomic force microscopy and tunable infrared lasers. Our condensed matter experimentalists also study other exotic materials, such as hyperpolarized noble gases, atomically thin materials, and low temperature quantum solids.


Learn More...


Medical Physics

Medical Physics is the branch of physics focusing on the broad and diverse application of physics to health care. The Medical Physics Program offers training and research through a variety of courses and research positions in the laboratories of the program faculty. As health care advances toward new and improved therapies, medical imaging and targeted therapies are playing ever-increasing roles in personalized medicine. This is a long-term growth area with exciting applications of physics principles to solve real world health care problems.
Learn More...


Particle Physics

The recent announcement of the discovery of the Higgs Boson rocked the world. The Higgs Boson, or “God Particle” is the particle within the Standard Model of Particle Physics that gives mass to all other particles. While the discovery of the Higgs Boson does solve one problem of particle physics, there are many problems yet unsolved. Particle physics research at the University of Utah is investigating physics beyond the standard model. Researchers are using connections between theoretical particle physics, cosmology and astrophysics, solving strong interactions of quarks and gluons through numerical simulation, and working on various problems in the frontier of theoretical physics including particle theory, condensed matter theory and mathematical physics.
Learn More...


Theoretical Condensed Matter Physics

Research topics of the condensed matter theory group cover essentially all problems of current interest: transport and optical properties of disordered interacting electron systems, 2-D electron gas with spin-orbit interactions, physics of graphene, the integer and fractional quantum Hall effect, correlated electron systems, quantum phase transitions and various frustrated spin models. Transport properties of strongly correlated systems subject to various external perturbations are also being investigated.
Learn More...



Follow Us

Support Us

Make A Difference

Outreach: The Department of Physics & Astronomy at the U

Community Outreach

Scholarships: The Department of Physics & Astronomy at the U

Academic Scholarships

General_Development: The Department of Physics & Astronomy at the U

Other Areas
of Support


Our Newest Program:

Crimson Laureate Society


Click to download full size.

The Department of Physics & Astronomy at the U


Science, it makes us all go


Even Our English Majors Study Physics


The Formula For The Perfect Pass


  • Department of Physics & Astronomy • 201 James Fletcher Bldg. 115 South 1400 East, Salt Lake City, UT 84112-0830
  • PHONE 801-581-6901
  • Fax 801-581-4801
  • ©2017 The University of Utah